0618 hadoop06

 

Hadoop第六天

1. Yarn资源调度

1.1. Yarn概述

Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序。

1.2. Yarn基本架构

  YARN主要由ResourceManagerNodeManagerApplicationMasterContainer等组件构成。

 

1.3. Yarn工作机制

 

小结:yarn工作机制

  1. Mr程序提交到客户端所在的节点。
  2. YarnrunnerResourcemanager申请一个Application
  3. rm将该应用程序的资源路径返回给yarnrunner
  4. 该程序将运行所需资源提交到HDFS上。
  5. 程序资源提交完毕后,申请运行mrAppMaster
  6. RM将用户的请求初始化成一个task
  7. 其中一个NodeManager领取到task任务。
  8. NodeManager创建容器Container,并产生MRAppmaster
  9. ContainerHDFS上拷贝资源到本地。
  10. MRAppmasterRM 申请运行maptask资源。
  11. RM将运行maptask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
  12. MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动maptaskmaptask对数据分区排序。
  13. MrAppMaster等待所有maptask运行完毕后,向RM申请容器,运行reduce task
  14. reduce taskmaptask获取相应分区的数据。
  15. 程序运行完毕后,MR会向RM申请注销自己。

1.4. Yarn中作业提交全过程

 

小结作业提交全过程:

1作业提交

0client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。

1步:client向RM申请一个作业id

2步:RMclient返回该job资源的提交路径和作业id。

3client提交jar包、切片信息和配置文件到指定的资源提交路径。

4步:client提交完资源后,向RM申请运行MrAppMaster

2作业初始化

5步:RM收到client的请求后,将该job添加到容量调度器中。

6一个空闲的NM领取到该job

7步:NM创建Container并产生MRAppmaster。

8:下载client提交的资源到本地。

3任务分配

9MrAppMasterRM申请运行多个maptask任务资源。

10RM运行maptask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务创建容器。

4任务运行

11MR向两个接收到任务的NodeManager发送程序启动脚本这两个NodeManager分别启动maptask,maptask对数据分区排序。

12MrAppMaster等待所有maptask运行完毕后,向RM申请容器,运行reduce task。

13reduce taskmaptask获取相应分区的数据。

14程序运行完毕后,MR会向RM申请注销自己。

5进度和状态更新

YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。

6作业完成

除了向应用管理器请求作业进度外, 客户端每5分钟都会通过调用waitForCompletion()来检查作业是否完成时间间隔可以通过mapreduce.client.completion.pollinterval来设置作业完成之后, 应用管理器和container会清理工作状态作业的信息会被作业历史服务器存储以备之后用户核查

1.5. 资源调度器

目前,Hadoop作业调度器主要有三种:FIFOCapacity SchedulerFair SchedulerHadoop2.7.2默认的资源调度器是Capacity Scheduler。

具体设置详见:yarn-default.xml文件

<property>

    <description>The class to use as the resource scheduler.</description>

    <name>yarn.resourcemanager.scheduler.class</name>

<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>

</property>

1.5.1. 先进先出调度器(FIFO

 

1.5.2. 容量调度器(Capacity Scheduler

 

1.5.3. 公平调度器(Fair Scheduler

 

1.6. 任务推测执行

1)作业完成时间取决于最慢的任务完成时间

一个作业由若干个Map任务和Reduce任务构成。因硬件老化、软件Bug等,某些任务可能运行非常慢。

典型案例:系统中有99%Map任务都完成了,只有少数几个Map老是进度很慢,完不成,怎么办?

2)推测执行机制:

发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果。

3)执行推测任务的前提条件

1每个task只能有一个备份任务

2当前job已完成的task必须不小于0.055%

3开启推测执行参数设置。Hadoop2.7.2 mapred-site.xml文件中默认是打开的。

<property>

  <name>mapreduce.map.speculative</name>

  <value>true</value>

</property>

 

<property>

  <name>mapreduce.reduce.speculative</name>

  <value>true</value>

</property>

4)不能启用推测执行机制情况

   1)任务间存在严重的负载倾斜;

   2)特殊任务,比如任务向数据库中写数据。

5)算法原理

 

2. Hadoop企业优化

2.1. MapReduce 跑的慢的原因

Mapreduce 程序效率的瓶颈在于两点:

1)计算机性能

CPU、内存、磁盘健康、网络

2I/O 操作优化

1)数据倾斜

2mapreduce数设置不合理

3map运行时间太长,导致reduce等待过久

4)小文件过多

5大量的不可分块的超大文件

6spill次数过多

7merge次数过多等。

2.2. MapReduce优化方法

MapReduce优化方法主要从六个方面考虑:数据输入、Map阶段Reduce阶段、IO传输、数据倾斜问题和常用的调优参数。

2.2.1. 数据输入

1)合并小文件:在执行mr任务前将小文件进行合并,大量的小文件会产生大量的map任务,增大map任务装载次数,而任务的装载比较耗时,从而导致mr运行较慢。

2)采用CombineTextInputFormat来作为输入,解决输入端大量小文件场景。

2.2.2. Map阶段

1)减少溢写spill次数:通过调整io.sort.mbsort.spill.percent参数值,增大触发spill的内存上限,减少spill次数,从而减少磁盘IO

2)减少合并merge次数:通过调整io.sort.factor参数,增大merge的文件数目,减少merge的次数,从而缩短mr处理时间。

3)在map之后,不影响业务逻辑前提下,先进行combine处理,减少 I/O

2.2.3. Reduce阶段

1)合理设置mapreduce:两个都不能设置太少,也不能设置太多。太少,会导致task等待,延长处理时间;太多,会导致 mapreduce任务间竞争资源,造成处理超时等错误。

2)设置mapreduce共存:调整slowstart.completedmaps参数,使map运行到一定程度后,reduce也开始运行,减少reduce的等待时间。

3规避使用reduce因为reduce在用于连接数据集的时候将会产生大量的网络消耗。

4)合理设置reduce端的buffer默认情况下,数据达到一个阈值的时候,buffer中的数据就会写入磁盘,然后reduce会从磁盘中获得所有的数据。也就是说,bufferreduce是没有直接关联的,中间多个一个写磁盘->读磁盘的过程,既然有这个弊端,那么就可以通过参数来配置,使得buffer中的一部分数据可以直接输送到reduce,从而减少IO开销:mapred.job.reduce.input.buffer.percent,默认为0.0。当值大于0的时候,会保留指定比例的内存读buffer中的数据直接拿给reduce使用。这样一来,设置buffer需要内存,读取数据需要内存,reduce计算也要内存,所以要根据作业的运行情况进行调整。

2.2.4. I/O传输

1采用数据压缩的方式,减少网络IO的时间。安装SnappyLZO压缩编码器

2使用SequenceFile二进制文件

2.2.5. 数据倾斜问题

1)数据倾斜现象

数据频率倾斜——某一个区域的数据量要远远大于其他区域。

数据大小倾斜——部分记录的大小远远大于平均值。

2)如何收集倾斜数据

reduce方法中加入记录map输出键的详细情况的功能

public static final String MAX_VALUES = "skew.maxvalues";

private int maxValueThreshold;

 

@Override

public void configure(JobConf job) {

     maxValueThreshold = job.getInt(MAX_VALUES, 100);

}

@Override

public void reduce(Text key, Iterator<Text> values,

                     OutputCollector<Text, Text> output,

                     Reporter reporter) throws IOException {

     int i = 0;

     while (values.hasNext()) {

         values.next();

         i++;

     }

 

     if (++i > maxValueThreshold) {

         log.info("Received " + i + " values for key " + key);

     }

}

3)减少数据倾斜方法

方法1:抽样和范围分区

可以通过对原始数据进行抽样得到的结果集来预设分区边界值。

方法2:自定义分区

基于输出键的背景知识进行自定义分区。例如,如果map输出键的单词来源于一本书。且其中某几个专业词汇较多。那么就可以自定义分区将这这些专业词汇发送给固定的一部分reduce实例。而将其他的都发送给剩余的reduce实例。

方法3Combine

使用Combine可以大量地减小数据倾斜。在可能的情况下,combine的目的就是聚合并精简数据。

方法4采用Map Join尽量避免Reduce Join

2.2.6. 常用的调优参数

1资源相关参数

(1)以下参数是在用户自己的mr应用程序中配置就可以生效(mapred-default.xml)

配置参数

参数说明

mapreduce.map.memory.mb

一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。

mapreduce.reduce.memory.mb

一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。

mapreduce.map.cpu.vcores

每个Map task可使用的最多cpu core数目,默认值: 1

mapreduce.reduce.cpu.vcores

每个Reduce task可使用的最多cpu core数目,默认值: 1

mapreduce.reduce.shuffle.parallelcopies

每个reducemap中拿数据的并行数。默认值是5

mapreduce.reduce.shuffle.merge.percent

buffer中的数据达到多少比例开始写入磁盘。默认值0.66

mapreduce.reduce.shuffle.input.buffer.percent

buffer大小占reduce可用内存的比例。默认值0.7

mapreduce.reduce.input.buffer.percent

指定多少比例的内存用来存放buffer中的数据,默认值是0.0

(2)应该在yarn启动之前就配置在服务器的配置文件中才能生效(yarn-default.xml)

配置参数

参数说明

yarn.scheduler.minimum-allocation-mb   1024

给应用程序container分配的最小内存

yarn.scheduler.maximum-allocation-mb   8192

给应用程序container分配的最大内存

yarn.scheduler.minimum-allocation-vcores 1

每个container申请的最小CPU核数

yarn.scheduler.maximum-allocation-vcores 32

每个container申请的最大CPU核数

yarn.nodemanager.resource.memory-mb   8192

给containers分配的最大物理内存

(3shuffle性能优化的关键参数,应在yarn启动之前就配置好(mapred-default.xml)

配置参数

参数说明

mapreduce.task.io.sort.mb   100

shuffle的环形缓冲区大小,默认100m

mapreduce.map.sort.spill.percent   0.8

环形缓冲区溢出的阈值,默认80%

2)容错相关参数(mapreduce性能优化)

配置参数

参数说明

mapreduce.map.maxattempts

每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4

mapreduce.reduce.maxattempts

每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4

mapreduce.task.timeout

Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是600000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。

2.3. HDFS文件优化方法

2.3.1. HDFS小文件弊端

HDFS上每个文件都要在namenode上建立一个索引,这个索引的大小约为150byte,这样当小文件比较多的时候,就会产生很多的索引文件,一方面会大量占用namenode的内存空间,另一方面就是索引文件过大是的索引速度变慢。

2.3.2. 解决方案

1Hadoop Archive:

 是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样减少了namenode的内存使用。

2Sequence file

 sequence file由一系列的二进制key/value组成,如果key文件名,value为文件内容,则可以将大批小文件合并成一个大文件。

3CombineFileInputFormat

  CombineFileInputFormat是一种新的inputformat,用于将多个文件合并成一个单独的split,另外,它会考虑数据的存储位置。

4)开启JVM重用

对于大量小文件Job可以开启JVM重用减少45%运行时间

JVM重用理解:一个map运行一个jvm,重用的话,在一个mapjvm上运行完毕后,jvm继续运行其他map

具体设置mapreduce.job.jvm.numtasks值10-20之间

3. Hadoop数据压缩

3.1. 概述

压缩技术能够有效减少底层存储系统(HDFS读写字节数。压缩提高了网络带宽和磁盘空间的效率。在Hadoop下,尤其是数据规模很大和工作负载密集的情况下,使用数据压缩显得非常重要。在这种情况下,I/O操作和网络数据传输要花大量的时间。还有,ShuffleMerge过程同样也面临着巨大的I/O压力

鉴于磁盘I/O网络带宽是Hadoop的宝贵资源,数据压缩对于节省资源、最小化磁盘I/O网络传输非常有帮助。不过尽管压缩与解压操作CPU开销不高,其性能的提升和资源的节省并非没有代价。

如果磁盘I/O和网络带宽影响了MapReduce作业性能,在任意MapReduce阶段启用压缩都可以改善端到端处理时间并减少I/O和网络流量。

压缩Mapreduce的一种优化策略:通过压缩编码对Mapper或者Reducer的输出进行压缩,以减少磁盘IO提高MR程序运行速度(但相应增加了cpu运算负担)。

注意压缩特性运用得当能提高性能,但运用不当也可能降低性能。

基本原则:

1)运算密集型的job,少用压缩

2IO密集型的job,多用压缩

3.2. MR支持的压缩编码

压缩格式

hadoop自带?

算法

文件扩展名

是否可切分

换成压缩格式后,原来的程序是否需要修改

DEFAULT

是,直接使用

DEFAULT

.deflate

和文本处理一样,不需要修改

Gzip

是,直接使用

DEFAULT

.gz

和文本处理一样,不需要修改

bzip2

是,直接使用

bzip2

.bz2

和文本处理一样,不需要修改

LZO

否,需要安装

LZO

.lzo

需要建索引,还需要指定输入格式

Snappy

否,需要安装

Snappy

.snappy

和文本处理一样,不需要修改

为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示

压缩格式

对应的编码/解码器

DEFLATE

org.apache.hadoop.io.compress.DefaultCodec

gzip

org.apache.hadoop.io.compress.GzipCodec

bzip2

org.apache.hadoop.io.compress.BZip2Codec

LZO

com.hadoop.compression.lzo.LzopCodec

Snappy

org.apache.hadoop.io.compress.SnappyCodec

压缩性能的比较

压缩算法

原始文件大小

压缩文件大小

压缩速度

解压速度

gzip

8.3GB

1.8GB

17.5MB/s

58MB/s

bzip2

8.3GB

1.1GB

2.4MB/s

9.5MB/s

LZO

8.3GB

2.9GB

49.3MB/s

74.6MB/s

http://google.github.io/snappy/

On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.

3.3. 4.3 压缩方式选择

3.3.1. 4.3.1 Gzip压缩

优点:压缩率比较高,而且压缩/解压速度也比较快;hadoop本身支持,在应用中处理gzip格式的文件就和直接处理文本一样;大部分linux系统都自带gzip命令,使用方便。

缺点:不支持split

应用场景:当每个文件压缩之后在130M以内的(1个块大小内),都可以考虑用gzip压缩格式。例如说一天或者一个小时的日志压缩成一个gzip文件,运行mapreduce程序的时候通过多个gzip文件达到并发。hive程序,streaming程序,和java写的mapreduce程序完全和文本处理一样,压缩之后原来的程序不需要做任何修改。

3.3.2. 4.3.2 Bzip2压缩

优点:支持split;具有很高的压缩率,比gzip压缩率都高;hadoop本身支持,但不支持native;在linux系统下自带bzip2命令,使用方便。

缺点:压缩/解压速度慢;不支持native

应用场景:适合对速度要求不高,但需要较高的压缩率的时候,可以作为mapreduce作业的输出格式;或者输出之后的数据比较大,处理之后的数据需要压缩存档减少磁盘空间并且以后数据用得比较少的情况;或者对单个很大的文本文件想压缩减少存储空间,同时又需要支持split,而且兼容之前的应用程序(即应用程序不需要修改)的情况

3.3.3. 4.3.3 Lzo压缩

优点:压缩/解压速度也比较快,合理的压缩率;支持split,是hadoop中最流行的压缩格式;可以在linux系统下安装lzop命令,使用方便。

缺点:压缩率比gzip要低一些;hadoop本身不支持,需要安装;在应用中对lzo格式的文件需要做一些特殊处理(为了支持split需要建索引,还需要指定inputformatlzo格式)。

应用场景:一个很大的文本文件,压缩之后还大于200M以上的可以考虑,而且单个文件越大,lzo优点越越明显。

3.3.4. 4.3.4 Snappy压缩

优点:高速压缩速度和合理的压缩率。

缺点:不支持split;压缩率比gzip要低;hadoop本身不支持,需要安装;

应用场景:当Mapreduce作业的Map输出的数据比较大的时候,作为MapReduce的中间数据的压缩格式;或者作为一个Mapreduce作业的输出和另外一个Mapreduce作业的输入。

3.4. 4.4 压缩位置选择

压缩可以在MapReduce作用的任意阶段启用。

 

3.5. 压缩参数配置

要在Hadoop中启用压缩,可以配置如下参数:

参数

默认值

阶段

建议

io.compression.codecs   

(在core-site.xml中配置)

org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec

 

输入压缩

Hadoop使用文件扩展名判断是否支持某种编解码器

mapreduce.map.output.compress(在mapred-site.xml中配置)

false

mapper输出

这个参数设为true启用压缩

mapreduce.map.output.compress.codec(在mapred-site.xml中配置)

org.apache.hadoop.io.compress.DefaultCodec

mapper输出

使用LZOsnappy编解码器在此阶段压缩数据

mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置)

false

reducer输出

这个参数设为true启用压缩

mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置)

org.apache.hadoop.io.compress. DefaultCodec

reducer输出

使用标准工具或者编解码器,如gzipbzip2

mapreduce.output.fileoutputformat.compress.type(在mapred-site.xml中配置)

RECORD

reducer输出

SequenceFile输出使用的压缩类型:NONEBLOCK

3.6. 压缩实操案例

3.6.1. 数据流的压缩和解压缩

CompressionCodec有两个方法可以用于轻松地压缩或解压缩数据。要想对正在被写入一个输出流的数据进行压缩,我们可以使用createOutputStream(OutputStreamout)方法创建一个CompressionOutputStream,将其以压缩格式写入底层的流。相反,要想对从输入流读取而来的数据进行解压缩,则调用createInputStream(InputStreamin)函数,从而获得一个CompressionInputStream从而从底层的流读取未压缩的数据。

测试一下如下压缩方式

DEFLATE

org.apache.hadoop.io.compress.DefaultCodec

gzip

org.apache.hadoop.io.compress.GzipCodec

bzip2

org.apache.hadoop.io.compress.BZip2Codec

 

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IOUtils;

import org.apache.hadoop.io.compress.CompressionCodec;

import org.apache.hadoop.io.compress.CompressionCodecFactory;

import org.apache.hadoop.io.compress.CompressionInputStream;

import org.apache.hadoop.io.compress.CompressionOutputStream;

import org.apache.hadoop.util.ReflectionUtils;

 

public class TestCompress {

 

public static void main(String[] args) throws Exception {

compress("e:/hello.txt","org.apache.hadoop.io.compress.BZip2Codec");

// decompress("e:/hello.txt.bz2");

}

 

// 压缩

private static void compress(String filename, String method) throws Exception {

 

// 1 获取输入流

FileInputStream fis = new FileInputStream(new File(filename));

 

Class codecClass = Class.forName(method);

 

CompressionCodec codec = (CompressionCodec) ReflectionUtils.newInstance(codecClass, new Configuration());

 

// 2 获取输出流

FileOutputStream fos = new FileOutputStream(new File(filename +codec.getDefaultExtension()));

CompressionOutputStream cos = codec.createOutputStream(fos);

 

// 3 流的对拷

IOUtils.copyBytes(fis, cos, 1024*1024*5, false);

 

// 4 关闭资源

fis.close();

cos.close();

fos.close();

}

 

// 解压缩

private static void decompress(String filename) throws FileNotFoundException, IOException {

 

// 0 校验是否能解压缩

CompressionCodecFactory factory = new CompressionCodecFactory(new Configuration());

CompressionCodec codec = factory.getCodec(new Path(filename));

 

if (codec == null) {

System.out.println("cannot find codec for file " + filename);

return;

}

 

// 1 获取输入流

CompressionInputStream cis = codec.createInputStream(new FileInputStream(new File(filename)));

 

// 2 获取输出流

FileOutputStream fos = new FileOutputStream(new File(filename + ".decoded"));

 

// 3 流的对拷

IOUtils.copyBytes(cis, fos, 1024*1024*5, false);

 

// 4 关闭资源

cis.close();

fos.close();

}

}

3.6.2. Map输出端采用压缩

即使你的MapReduce的输入输出文件都是未压缩的文件,你仍然可以对map任务的中间结果输出做压缩,因为它要写在硬盘并且通过网络传输到reduce节点,对其压缩可以提高很多性能,这些工作只要设置两个属性即可,我们来看下代码怎么设置:

1)给大家提供的hadoop源码支持的压缩格式有:BZip2Codec 、DefaultCodec

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.io.compress.BZip2Codec;

import org.apache.hadoop.io.compress.CompressionCodec;

import org.apache.hadoop.io.compress.GzipCodec;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class WordCountDriver {

 

public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

 

Configuration configuration = new Configuration();

 

// 开启map端输出压缩

configuration.setBoolean("mapreduce.map.output.compress", true);

// 设置map端输出压缩方式

configuration.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class, CompressionCodec.class);

 

Job job = Job.getInstance(configuration);

 

job.setJarByClass(WordCountDriver.class);

 

job.setMapperClass(WordCountMapper.class);

job.setReducerClass(WordCountReducer.class);

 

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);

 

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

 

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

 

boolean result = job.waitForCompletion(true);

 

System.exit(result ? 1 : 0);

}

}

2Mapper保持不变

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

 

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{

 

@Override

protected void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

// 1 获取一行

String line = value.toString();

// 2 切割

String[] words = line.split(" ");

// 3 循环写出

for(String word:words){

context.write(new Text(word), new IntWritable(1));

}

}

}

3)Reducer保持不变

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

 

public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{

 

@Override

protected void reduce(Text key, Iterable<IntWritable> values,

Context context) throws IOException, InterruptedException {

 

int count = 0;

// 1 汇总

for(IntWritable value:values){

count += value.get();

}

 

        // 2 输出

context.write(key, new IntWritable(count));

}

}

3.6.3. Reduce输出端采用压缩

基于workcount案例处理

1修改驱动

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.io.compress.BZip2Codec;

import org.apache.hadoop.io.compress.DefaultCodec;

import org.apache.hadoop.io.compress.GzipCodec;

import org.apache.hadoop.io.compress.Lz4Codec;

import org.apache.hadoop.io.compress.SnappyCodec;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class WordCountDriver {

 

public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

 

Configuration configuration = new Configuration();

 

Job job = Job.getInstance(configuration);

 

job.setJarByClass(WordCountDriver.class);

 

job.setMapperClass(WordCountMapper.class);

job.setReducerClass(WordCountReducer.class);

 

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);

 

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

 

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

 

// 设置reduce端输出压缩开启

FileOutputFormat.setCompressOutput(job, true);

 

// 设置压缩的方式

    FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class);

//     FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

//     FileOutputFormat.setOutputCompressorClass(job, DefaultCodec.class);

    

boolean result = job.waitForCompletion(true);

 

System.exit(result?1:0);

}

}

4. 配置历史服务器

4.1. 配置历史服务器

[root@hadoop01 hadoop]# vim /opt/module/hadoop-2.7.2/etc/hadoop/mapred-site.xml

<configuration>

        <!-- 配置历史服务器地址 -->

        <property>

          <name>mapreduce.jobhistory.address</name>

          <value>hadoop01:10020</value>

        </property>

        <!-- 配置历史服务器web站点-->

        <property>

          <name>mapreduce.jobhistory.webapp.address</name>

          <value>hadoop01:19888</value>

        </property>

</configuration>

 

4.2. 同步配置到集群

[root@hadoop01 hadoop]# xsync /opt/module/hadoop-2.7.2/etc/hadoop/mapred-site.xml

4.3. 启动历史服务器

[root@hadoop01 hadoop-2.7.2]# sbin/mr-jobhistory-daemon.sh start historyserver

4.4. 查看历史

 

 

5. 配置日志的聚集

日志的聚集概念: 把应用系统上的日志信息聚焦到HDFS上进行存储.

开启日志聚集的步骤:

<!--开启日志聚集-->

<property>

<name>yarn.log-aggregation-enable</name>

<value>false</value>

</property>

<!-- 设置保留日志的秒数-->

<property>

<name>yarn.log-aggregation.retain-seconds</name>

<value>604800</value>

</property>

 

同步集群:

[root@hadoop01 hadoop]# xsync /opt/module/hadoop-2.7.2/etc/hadoop/yarn-site.xml

 

posted @   linzm14  阅读(56)  评论(0编辑  收藏  举报
编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 周边上新:园子的第一款马克杯温暖上架
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?
· 使用C#创建一个MCP客户端
点击右上角即可分享
微信分享提示