Torchtext使用教程 文本数据处理
Torchtext
文本数据预处理工具
Field
定义数据处理的方式,将原始数据转为
TENSOR
Field使用
from torchtext import data
TEXT = data.Field(sequential=True, tokenize=tokenize, lower=True, fix_length=200)
LABEL = data.Field(sequential=False, use_vocab=False)
Field参数
参数名 | 说明 |
---|---|
sequential | Default: True 是否是序列数据,如果不是就不使用tokenization |
use_vocab | Default: True 是否使用a Vocab object.如果不使用的话,原始数据应已是数字类型. |
init_token | Default: None A token that will be prepended to every example using this field, or None for no initial token. |
eos_token | A token that will be appended to every example using this field, or None for no end-of-sentence token. Default: None. |
fix_length | Default: None. 设置序列数据的定长 eg. 100 |
dtype | The torch.dtype class that represents a batch of examples of this kind of data. Default: torch.long. |
preprocessing | The Pipeline that will be applied to examples using this field after tokenizing but before numericalizing. Many Datasets replace this attribute with a custom preprocessor. Default: None. |
postprocessing | A Pipeline that will be applied to examples using this field after numericalizing but before the numbers are turned into a Tensor. The pipeline function takes the batch as a list, and the field’s Vocab. Default: None. |
lower | Default: False. 字符串转为小写 |
tokenize | Default: string.split 对原始数据进行字符串操作,eg. 输入tokenize = lambda x: x.split() |
tokenizer_language | The language of the tokenizer to be constructed. Various languages currently supported only in SpaCy. |
include_lengths | Whether to return a tuple of a padded minibatch and a list containing the lengths of each examples, or just a padded minibatch. Default: False. |
batch_first | Default: False 是否返回batch维度在第一个维度的数据 |
pad_token | The string token used as padding. Default: “ |
unk_token | The string token used to represent OOV words. Default: “ |
pad_first | Do the padding of the sequence at the beginning. Default: False. |
truncate_first | Do the truncating of the sequence at the beginning. Default: False |
stop_words | Tokens to discard during the preprocessing step. Default: None |
is_target | Whether this field is a target variable. Affects iteration over batches. Default: False |
Dataset
使用Field来定义数据组成形式,得到数据集
Dataset使用
自定义Dataset类
from torchtext import data
import random
import numpy as np
class MyDataset(data.Dataset):
def __init__(self, csv_path, text_field, label_field, test=False, aug=False, **kwargs):
csv_data = pd.read_csv(csv_path)
# 数据处理操作格式
fields = [("id", None),("text", text_field), ("label", label_field)]
examples = []
if test:
# 如果为测试集,则不加载标签
for text in tqdm(csv_data['text']):
examples.append(data.Example.fromlist([None, text, None], fields))
else:
for text, label in tqdm(zip(csv_data['text'], csv_data['label'])):
# 数据增强
if aug:
rate = random.random()
if rate > 0.5:
text = self.dropout(text)
else:
text = self.shuffle(text)
examples.append(data.Example.fromlist([None, text, label], fields))
# 上面是一些预处理操作,此处调用super调用父类构造方法,产生标准Dataset
# super(MyDataset, self).__init__(examples, fields, **kwargs)
super(MyDataset, self).__init__(examples, fields)
def shuffle(self, text):
# 序列随机排序
text = np.random.permutation(text.strip().split())
return ' '.join(text)
def dropout(self, text, p=0.5):
# 随机删除一些文本
text = text.strip().split()
len_ = len(text)
indexs = np.random.choice(len_, int(len_ * p))
for i in indexs:
text[i] = ''
return ' '.join(text)
Iterator
迭代器 Iterator / BucketIterator
Iterator
保持数据样本顺序不变来构建批数据
BucketIterator
自动选取样本长度相似的数据来构建批数据,最大程度地减少所需的填充量
from torchtext import data
def data_iter(train_path, valid_path, test_path, TEXT, LABEL):
train = MyDataset(train_path, text_field=TEXT, label_field=LABEL, test=False, aug=1)
valid = MyDataset(valid_path, text_field=TEXT, label_field=LABEL, test=False, aug=1)
test = MyDataset(test_path, text_field=TEXT, label_field=None, test=True, aug=1)
# 传入用于构建词表的数据集
# TEXT = data.Field(sequential=True, tokenize=tokenize, lower=True, fix_length=200)
TEXT.build_vocab(train)
weight_matrix = TEXT.vocab.vectors
# 只针对训练集构造迭代器
# train_iter = data.BucketIterator(dataset=train, batch_size=8, shuffle=True, sort_within_batch=False, repeat=False)
# 同时对训练集和验证集构造迭代器
train_iter, val_iter = data.BucketIterator.splits(
(train, valid),
batch_sizes=(8, 8),
# 如果使用gpu,此处将-1更换为GPU的编号
device=-1,
# 用来排序的指标
sort_key=lambda x: len(x.text),
sort_within_batch=False,
repeat=False
)
test_iter = Iterator(test, batch_size=8, device=-1, sort=False, sort_within_batch=False, repeat=False)
return train_iter, val_iter, test_iter, weight_matrix
Word Embedding
在使用pytorch或tensorflow等神经网络框架进行nlp任务的处理时,可以通过对应的Embedding层做词向量的处理。使用预训练好的词向量会带来更优的性能,下面介绍如何在torchtext中使用预训练的词向量,进而传送给神经网络模型进行训练。
torchtext 默认支持的预训练词向量
自动下载对应的预训练词向量文件到当前文件夹下的.vector_cache目录下,.vector_cache为默认的词向量文件和缓存文件的目录。
from torchtext.vocab import GloVe
from torchtext import data
TEXT = data.Field(sequential=True)
# 以下两种指定预训练词向量的方式等效
# TEXT.build_vocab(train, vectors="glove.6B.200d")
TEXT.build_vocab(train, vectors=GloVe(name='6B', dim=300))
# 在这种情况下,会默认下载glove.6B.zip文件,进而解压出glove.6B.50d.txt, glove.6B.100d.txt
外部预训练的词向量
通过
name
参数指定预训练文件,通过cache
参数指定预训练文件目录
cache = '.vector_cache'
vectors = Vectors(name='myvector/glove/glove.6B.200d.txt', cache=cache)
TEXT.build_vocab(train, vectors=vectors)
在模型中指定Embedding层参数
import torch.nn as nn
# pytorch创建的Embedding层
embedding = nn.Embedding(input_dim, hidden_dim)
# 权重在词汇表vocab的vectors属性中
weight_matrix = TEXT.vocab.vectors
# 指定嵌入矩阵的初始权重
embedding.weight.data.copy_(weight_matrix)