在线求中位数

在线求第k个数做得多了,在线求中位数也是用堆,一个最大堆,一个最小堆。

思想大概是这样子的:

  1. 一个最大堆,一个最小堆,最大堆对应于前n/(n+1)个数,最小堆对应于后n/n+1个数;假设最大堆堆项元素为n1, 最小堆堆顶为n2, 则n1 <= n2;
  2. 确保两个堆的大小最多只差1. 设最大堆大小为s1, 最小堆大小为s2,则abs(s1-s2) <= 1;
  3. 对于新来的数m,分情况调整:
    1. 如果s1== s2, 那么:如果m<= n2, m插入到最大堆,s1= s1+1; 否则插入到最小堆,s2=s2+1;
    2. 如果s1 > s2, 那么:如果m >= n1, m插入到最小堆,s2=s2+1;否则,n1pop出最大堆,然后push进最小堆,然后m进最大堆,s2=s2+1;
    3. 如果s1 < s2, 那么:如果m <=n2, m插入到最大堆,s1=s1+1;否则,n2pop出最小堆,然后push进最大堆,然后m进最小堆,s1=s1+1;

代码如下:

 

 1 int main(int argc, char** argv) {
 2     priority_queue<int, vector<int>, less<int> > maxHeap;
 3     priority_queue<int, vector<int>, greater<int> > minHeap;
 4     
 5     vector<int> nums;
 6     srand(time(NULL));
 7     for (int i = 0; i < 10000; ++i) {
 8         nums.push_back(rand() % 1000);
 9         cout << nums[i] << " ";
10     }
11     cout << endl;
12     
13     double median; 
14     for (int i = 0; i < nums.size(); ++i) {
15         if (maxHeap.size() == minHeap.size()) {
16             if (minHeap.empty() || nums[i] <= minHeap.top()) {
17                 maxHeap.push(nums[i]);
18                 median = maxHeap.top();
19             } else {
20                 minHeap.push(nums[i]);
21                 median = minHeap.top();
22             }
23         } else if (maxHeap.size() > minHeap.size()) {
24             if (maxHeap.empty() || nums[i] >= maxHeap.top()) {
25                 minHeap.push(nums[i]);
26             } else {
27                 minHeap.push(maxHeap.top()); 
28                 maxHeap.pop();
29                 maxHeap.push(nums[i]);
30             }
31             median = (maxHeap.top() + minHeap.top()) / 2.0;
32         } else {
33             if (minHeap.empty() || nums[i] <= minHeap.top()) {
34                 maxHeap.push(nums[i]);
35             } else {
36                 maxHeap.push(minHeap.top());
37                 minHeap.pop();
38                 minHeap.push(nums[i]);
39             }
40             median = (maxHeap.top() + minHeap.top()) / 2.0;
41         }
42         cout << i << "-th: " << median << endl;
43     }
44     
45     return 0;
46 }

 

posted @ 2014-10-30 15:54  linyx  阅读(534)  评论(0编辑  收藏  举报