tensorflow教程:collection,regularizer
tf.add_to_collection:把变量放入一个集合,把很多变量变成一个列表
tf.get_collection:从一个集合中取出全部变量,是一个列表
tf.add_n:把一个列表的东西都依次加起来
例如:
- import tensorflow as tf;
- import numpy as np;
- import matplotlib.pyplot as plt;
- v1 = tf.get_variable(name='v1', shape=[1], initializer=tf.constant_initializer(0))
- tf.add_to_collection('loss', v1)
- v2 = tf.get_variable(name='v2', shape=[1], initializer=tf.constant_initializer(2))
- tf.add_to_collection('loss', v2)
- with tf.Session() as sess:
- sess.run(tf.initialize_all_variables())
- print tf.get_collection('loss')
- print sess.run(tf.add_n(tf.get_collection('loss')))
输出:
[<tensorflow.Python.ops.variables.Variable object at 0x7f6b5d700c50>, <tensorflow.python.ops.variables.Variable object at 0x7f6b5d700c90>]
tensorflow Regularizers
在损失函数上加上正则项是防止过拟合的一个重要方法,下面介绍如何在TensorFlow
中使用正则项.
tensorflow
中对参数使用正则项分为两步:
1. 创建一个正则方法(函数/对象)
2. 将这个正则方法(函数/对象),应用到参数上
如何创建一个正则方法函数
tf.contrib.layers.l1_regularizer(scale, scope=None)
返回一个用来执行L1
正则化的函数,函数的签名是func(weights)
.
参数:
- scale: 正则项的系数.
- scope: 可选的
scope name
tf.contrib.layers.l2_regularizer(scale, scope=None)
返回一个执行L2
正则化的函数.
tf.contrib.layers.sum_regularizer(regularizer_list, scope=None)
返回一个可以执行多种(个)正则化的函数.意思是,创建一个正则化方法,这个方法是多个正则化方法的混合体.
参数:
regularizer_list: regulizer的列表
已经知道如何创建正则化方法了,下面要说明的就是如何将正则化方法应用到参数上
应用正则化方法到参数上
tf.contrib.layers.apply_regularization(regularizer, weights_list=None)
先看参数
- regularizer:就是我们上一步创建的正则化方法
- weights_list: 想要执行正则化方法的参数列表,如果为
None
的话,就取GraphKeys.WEIGHTS
中的weights
.
函数返回一个标量Tensor
,同时,这个标量Tensor
也会保存到GraphKeys.REGULARIZATION_LOSSES
中.这个Tensor
保存了计算正则项损失的方法.
tensorflow
中的Tensor
是保存了计算这个值的路径(方法),当我们run的时候,tensorflow
后端就通过路径计算出Tensor
对应的值
现在,我们只需将这个正则项损失加到我们的损失函数上就可以了.
如果是自己手动定义
weight
的话,需要手动将weight
保存到GraphKeys.WEIGHTS
中,但是如果使用layer
的话,就不用这么麻烦了,别人已经帮你考虑好了.(最好自己验证一下tf.GraphKeys.WEIGHTS
中是否包含了所有的weights
,防止被坑)
其它
在使用tf.get_variable()
和tf.variable_scope()
的时候,你会发现,它们俩中有regularizer
形参.如果传入这个参数的话,那么variable_scope
内的weights
的正则化损失,或者weights
的正则化损失就会被添加到GraphKeys.REGULARIZATION_LOSSES
中.
示例:
import tensorflow as tf
from tensorflow.contrib import layers
regularizer = layers.l1_regularizer(0.1)
with tf.variable_scope('var', initializer=tf.random_normal_initializer(),
regularizer=regularizer):
weight = tf.get_variable('weight', shape=[8], initializer=tf.ones_initializer())
with tf.variable_scope('var2', initializer=tf.random_normal_initializer(),
regularizer=regularizer):
weight2 = tf.get_variable('weight', shape=[8], initializer=tf.ones_initializer())
regularization_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))