课时七、聚类

聚类

聚类定义

  • 对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大,而类别间的数据相似度较小--无监督

相似度计算方法

  • Jaccard相似度的由来
  • 余弦相似度与Pearson相似系数

基本思想

  • 给定一个有N个对象的数据集,构造数据的k个簇,k<n 。满足以下条件:
    • 每个簇至少包含一个对象
    • 每个对象属于且属于一个簇
  • 满足条件的簇成为合理划分
  • 对于给定的类别数目k,首先给出初始划分,通过迭代改变样本和簇的隶属关系,使得每一次改进之后的划分方案都比前一次好

k-means算法

  • k-means过程
  • 初值敏感
    • k-means++多了根据距离加权更新距离中心的操作
  • k-means的公式化解释
  • k-means聚类方法总结

Canopy算法

聚类的衡量指标

ARI

AMI

轮廓系数


层次聚类


AGNES中簇间距离的不同定义

密度聚类方法

DBSCAN算法

  • DBSCAN算法的若干概念


密度最大值聚类

局部密度的其他定义

高局部密度点距离

簇中心的识别


边界和噪声的重认识

谱和谱聚类

谱分析的整体过程

若干概念

相似图G的建立方法

拉普拉斯矩阵及其性质

谱聚类算法:对称拉普拉斯矩阵

谱聚类算法:未正则拉普拉斯矩阵

谱聚类算法:随机游走拉普拉斯矩阵

  • 随机游走和拉普拉斯矩阵的关系

进一步思考

posted @ 2020-07-22 22:24  败家小林  阅读(246)  评论(0编辑  收藏  举报