数学符号表
数学符号表[编辑]
本页面包含特殊字符,部分操作系统及浏览器需要特殊字母与符号支持才能正确显示,否则可能出现乱码、问号、空格等其它符号。 |
数学中,有一组常在数学表达式中出现的符号。数学工作者一般熟悉这些符号,所以使用时不一定会加以说明。但绝大多数常见的符号都有相应标准[1]或Unicode符号说明[2]等加以规范。下表列出了很多常见的数学符号,并附有名称、读法和应用领域。第三栏给出一个非正式的定义,第四栏提供简单的例子。
注意,有时候不同的数学符号有相同含义,而有些数学符号在不同的语境中会有不同的含义。
数学符号表[编辑]
符号 | 名称 | 定义 | 举例 | ||
---|---|---|---|---|---|
读法 | |||||
数学领域 | |||||
=
|
等号 | {\displaystyle x=y} |
{\displaystyle 1+1=2} |
||
等于 | |||||
所有领域 | |||||
≠
|
不等号 | {\displaystyle x\neq y} |
{\displaystyle 1\neq 2} |
||
不等于 | |||||
所有领域 | |||||
<
> |
严格不等号 | {\displaystyle x<y} {\displaystyle x>y} |
{\displaystyle 3<4} {\displaystyle 5>4} |
||
小于,大于 | |||||
序理论 | |||||
≤
≥ |
不等号 | {\displaystyle x\leq y} {\displaystyle x\geq y} |
{\displaystyle 3\leq 4} {\displaystyle 5\geq 4} |
||
小于等于,大于等于 | |||||
序理论 | |||||
+
|
加号 | {\displaystyle 3+3} |
{\displaystyle 3+3=6} |
||
加 | |||||
算术 | |||||
−
|
减号 | {\displaystyle 6-3} |
{\displaystyle 6-3=3} |
||
减 | |||||
算术 | |||||
负号 | −5 表示 5 的负数。 | {\displaystyle -(-5)=5} |
|||
负 | |||||
算术 | |||||
补集 | {\displaystyle A-B} |
{\displaystyle \left\{1,2,4\right\}-\left\{1,3,4\right\}=\left\{2\right\}} |
|||
减 | |||||
集合论 | |||||
×
|
乘号 | {\displaystyle 2\times 3} |
{\displaystyle 2\times 3=6} |
||
乘以 | |||||
算术 | |||||
直积 | {\displaystyle X\times Y} |
{\displaystyle \left\{1,2\right\}\times \left\{3,4\right\}=\left\{(1,3),(1,4),(2,3),(2,4)\right\}} |
|||
… 和…的直积 | |||||
集合论 | |||||
向量积 | {\displaystyle {\boldsymbol {u}}\times {\boldsymbol {v}}} |
{\displaystyle (1,2,5)\times (3,4,-1)=(-22,16,-2)} |
|||
向量积 | |||||
向量代数 | |||||
÷
/ |
除号 | {\displaystyle 6\div 3} |
{\displaystyle 6\div 3=2} {\displaystyle 12/4=3} |
||
除以 | |||||
算术 | |||||
{\displaystyle {\sqrt {}}}
{\displaystyle {\sqrt {\ }}} |
根号 | {\displaystyle {\sqrt {x}}} |
{\displaystyle {\sqrt {4}}=+2} |
||
…的平方根 | |||||
实数 | |||||
复根号 | 若用极坐标表示复数{\displaystyle z=r\exp(i\varphi )} |
{\displaystyle {\sqrt {-1}}=i} |
|||
…的平方根 | |||||
复数 | |||||
| |
|
绝对值 | {\displaystyle \left\vert x\right\vert } |
{\displaystyle \left\vert 3\right\vert =3} |
||
…的绝对值 | |||||
数 | |||||
!
|
阶乘 | {\displaystyle n!} |
{\displaystyle 4!=1\times 2\times 3\times 4=24} |
||
…的阶乘 | |||||
组合论 | |||||
~
|
概率分布 | {\displaystyle X\sim D} |
{\displaystyle X\sim N(0,1)} |
||
满足分布 | |||||
统计学 | |||||
⇒
→ ⊃ |
实质蕴涵 | {\displaystyle A\Rightarrow B} {\displaystyle \rightarrow } {\displaystyle \supset } |
{\displaystyle x=2\Rightarrow x^{2}=4} |
||
推出,若…则 … | |||||
命题逻辑 | |||||
⇔
↔ |
实质等价 | {\displaystyle A\Leftrightarrow B} |
{\displaystyle x+5=y+2\Leftrightarrow x+3=y} |
||
当且仅当(当且仅当) | |||||
命题逻辑 | |||||
¬
˜ |
逻辑非 | 命题{\displaystyle \neg A} 将一条斜线穿过一个符号相当于将 "{\displaystyle \neg } |
{\displaystyle \neg (\neg A)\Leftrightarrow A} {\displaystyle x\neq y\Leftrightarrow \neg (x=y)} |
||
非,不 | |||||
命题逻辑 | |||||
∧
|
逻辑与或交运算 | 若{\displaystyle A} |
{\displaystyle n<4\land n>2\Leftrightarrow n=3} |
||
与 | |||||
命题逻辑,格理论 | |||||
∨
|
逻辑或或并运算 | 若{\displaystyle A} |
{\displaystyle n\geq 4\lor n\leq 2\Leftrightarrow n\neq 3} |
||
或 | |||||
命题逻辑,格理论 | |||||
⊕
⊻
|
异或 | 若{\displaystyle A} {\displaystyle A\veebar B} |
{\displaystyle (\neg A)\oplus A} |
||
异或 | |||||
命题逻辑,布尔代数 | |||||
∀
|
全称量词 | {\displaystyle \forall x:P(x)} |
{\displaystyle \forall n\in \mathbb {N} :n^{2}\geq n} |
||
对所有;对任意;对任一 | |||||
谓词逻辑 | |||||
∃
|
存在量词 | {\displaystyle \exists x:P(x)} |
{\displaystyle \exists n\in \mathbb {N} :n} |
||
存在 | |||||
谓词逻辑 | |||||
∃!
|
唯一量词 | {\displaystyle \exists !x:P(x)} |
{\displaystyle \exists !n\in \mathbb {N} :n+5=2n} |
||
存在唯一 | |||||
谓词逻辑 | |||||
:=
≡ :⇔ |
定义 | {\displaystyle x:=y} {\displaystyle P:\Leftrightarrow Q} |
{\displaystyle \cosh x:={\frac {1}{2}}\left(\exp x+\exp(-x)\right)} {\displaystyle A\;{\text{XOR}}\;B:\Leftrightarrow (A\lor B)\land \neg (A\land B)} |
||
定义为 | |||||
所有领域 | |||||
{ , }
|
集合括号 | {\displaystyle \left\{a,b,c\right\}} |
{\displaystyle \mathbb {N} =\left\{0,1,2,\ldots \right\}} |
||
…的集合 | |||||
集合论 | |||||
{ : }
{ | } |
集合构造记号 | {\displaystyle \left\{x:P(x)\right\}} {\displaystyle \left\{x|P(x)\right\}} |
{\displaystyle \left\{n\in \mathbb {N} :n^{2}<20\right\}=\left\{0,1,2,3,4\right\}} |
||
满足…的集合 | |||||
集合论 | |||||
∅
{} |
空集合 | {\displaystyle \varnothing } {\displaystyle \left\{\right\}} |
{\displaystyle \left\{n\in \mathbb {N} :1<n^{2}<4\right\}=\varnothing } |
||
空集合 | |||||
集合论 | |||||
∈
∉ |
元素归属性质 | {\displaystyle a\in S} {\displaystyle a\not \in S} |
{\displaystyle \left({\frac {1}{2}}\right)^{-1}\in \mathbb {N} } {\displaystyle 2^{-1}\not \in \mathbb {N} } |
||
属于;不属于 | |||||
所有领域 | |||||
⊆
⊂ ⫋ |
子集 | {\displaystyle A\subseteq B} {\displaystyle A\subset B} (有的地方记作{\displaystyle A\subsetneqq B} |
{\displaystyle A\cap B\subseteq A}
|
||
…的子集 | |||||
集合论 | |||||
⊇
⊃
|
父集 | {\displaystyle A\supseteq B} {\displaystyle A\supset B}
|
{\displaystyle A\cup B\supseteq B}
|
||
…的父集 | |||||
集合论 | |||||
∪
|
并集(并集) | {\displaystyle A\cup B} |
{\displaystyle A\subseteq B\Leftrightarrow A\cup B=B} |
||
…和…的并集 | |||||
集合论 | |||||
∩
|
交集 | {\displaystyle A\cap B} |
{\displaystyle \left\{x\in \mathbb {R} :x^{2}=1\right\}\cap \mathbb {N} =\left\{1\right\}} |
||
…和…的交集 | |||||
集合论 | |||||
\
|
补集 | {\displaystyle A\setminus B} (有的地方记作{\displaystyle \complement _{A}B} |
{\displaystyle \left\{1,2,3,4\right\}\setminus \left\{3,4,5,6\right\}=\left\{1,2\right\}}
|
||
减;除去 | |||||
集合论 | |||||
( )
|
函数应用 | {\displaystyle f(x)} |
{\displaystyle f(x):=x^{2}} |
||
{\displaystyle f(x)} |
|||||
集合论 | |||||
优先组合 | 先执行括号内的运算。 | {\displaystyle \left({\frac {8}{4}}\right)\div 2={\frac {2}{2}}=1} {\displaystyle 8\div \left({\frac {4}{2}}\right)={\frac {8}{2}}=4} |
|||
所有领域 | |||||
ƒ :X
→Y |
函数箭头 | {\displaystyle f:X\rightarrow Y} |
设{\displaystyle f:\mathbb {Z} \rightarrow \mathbb {N} } |
||
从…到… | |||||
集合论 | |||||
o
|
复合函数 | {\displaystyle f\circ g} |
若{\displaystyle f(x)=2x} |
||
复合 | |||||
集合论 | |||||
N
ℕ
|
自然数 | {\displaystyle \mathbb {N} } |
{\displaystyle \left\{\left\vert a\right\vert :a\in \mathbb {Z} \right\}=\mathbb {N} } |
||
N | |||||
数 | |||||
Z
ℤ
|
整数 | {\displaystyle \mathbb {Z} } |
{\displaystyle \left\{a:\left\vert a\right\vert \in \mathbb {N} \right\}=\mathbb {Z} } |
||
Z | |||||
数 | |||||
Q
ℚ
|
有理数 | {\displaystyle \mathbb {Q} } |
{\displaystyle 3.14\in \mathbb {Q} } {\displaystyle \pi \not \in \mathbb {Q} } |
||
Q | |||||
数 | |||||
R
ℝ
|
实数 | {\displaystyle \mathbb {R} } |
{\displaystyle \pi \in \mathbb {R} } {\displaystyle {\sqrt {-1}}\not \in \mathbb {R} } |
||
R | |||||
数 | |||||
C
ℂ
|
复数 | {\displaystyle \mathbb {C} } |
{\displaystyle i={\sqrt {-1}}\in \mathbb {C} } |
||
C | |||||
数 | |||||
∞
|
无穷 | {\displaystyle \infty } |
{\displaystyle \textstyle \lim _{x\to 0}\displaystyle {\frac {1}{\left\vert x\right\vert }}=\infty } |
||
无穷 | |||||
数 | |||||
π
|
圆周率 | {\displaystyle \pi } |
{\displaystyle A=\pi r^{2}} |
||
pi | |||||
几何 | |||||
|| ||
|
范数 | {\displaystyle \left\Vert x\right\Vert } |
{\displaystyle \left\Vert x+y\right\Vert \leq \left\Vert x\right\Vert +\left\Vert y\right\Vert } |
||
…的范数;…的长度 | |||||
线性代数 | |||||
∑
|
求和 | {\displaystyle \sum _{k=1}^{n}a_{k}} |
{\displaystyle {\begin{aligned}\sum _{k=1}^{4}k^{2}&=1^{2}+2^{2}+3^{2}+4^{2}\\&=1+4+9+16\\&=30\end{aligned}}} |
||
从…到…的和 | |||||
算术 | |||||
∏
|
求积 | {\displaystyle \prod _{k=1}^{n}a_{k}} |
{\displaystyle {\begin{aligned}\prod _{k=1}^{4}(k+2)&=(1+2)(2+2)(3+2)(4+2)\\&=3\times 4\times 5\times 6\\&=360\end{aligned}}} |
||
从…到…的积 | |||||
算术 | |||||
直积 | {\displaystyle \prod _{i=0}^{n}Y_{i}} |
{\displaystyle \prod _{n=1}^{3}\mathbb {R} =\mathbb {R} ^{n}} |
|||
…的直积 | |||||
集合论 | |||||
'
|
导数 | {\displaystyle f'(x)} |
若{\displaystyle f(x)=x^{2}} |
||
… 撇; …的导数 | |||||
微积分 | |||||
∫
|
不定积分 或 反导数 | {\displaystyle \int f(x)dx} |
{\displaystyle \int x^{2}dx={\frac {x^{3}}{3}}+C} |
||
…的不定积分; …的反导数 | |||||
微积分 | |||||
定积分 | {\displaystyle \int _{a}^{b}f(x)dx} |
{\displaystyle \int _{0}^{b}x^{2}dx={\frac {b^{3}}{3}}} |
|||
从…到…以…为变量的积分 | |||||
微积分 | |||||
∇
|
梯度 | {\displaystyle \triangledown f(x_{1},\ldots ,x_{n})} |
若{\displaystyle f(x,y,z)=3xy+z^{2}} |
||
…的(del或nabla或梯度) | |||||
微积分 | |||||
∂
|
偏导数 | 设有{\displaystyle f(x_{1},\ldots ,x_{n}),\partial f/\partial x} |
若{\displaystyle f(x,y)=x^{2}y} |
||
…的偏导数 | |||||
微积分 | |||||
边界 | {\displaystyle \partial M} |
{\displaystyle \partial \left\{x:\left\Vert x\right\Vert \leq 2\right\}=\left\{x:\left\Vert x\right\Vert =2\right\}} |
|||
…的边界 | |||||
拓扑 | |||||
次数 | {\displaystyle \partial f(x)} |
||||
…的次数 | |||||
多项式 | |||||
⊥
|
垂直 | {\displaystyle x\perp y} |
若{\displaystyle I\perp m} |
||
垂直于 | |||||
几何 | |||||
底元素 | {\displaystyle x=\perp } |
{\displaystyle \forall x:x\land \perp =\perp } |
|||
底元素 | |||||
格理论 | |||||
⊧
|
蕴涵 | {\displaystyle A\models B} |
{\displaystyle A\models A\lor \neg A} |
||
蕴涵; | |||||
模型论 | |||||
⊢
|
推导 | {\displaystyle x\vdash y} |
{\displaystyle A\rightarrow B\vdash \neg B\rightarrow \neg A} |
||
从…导出 | |||||
命题逻辑, 谓词逻辑 | |||||
◅
|
正规子群 | {\displaystyle N\triangleleft G} |
{\displaystyle Z(G)\triangleleft G} |
||
是…的正规子群 | |||||
群论 | |||||
/
|
商群 | {\displaystyle G/H} |
|
||
模 | |||||
群论 | |||||
≈
|
同构 | {\displaystyle G\approx H} |
{\displaystyle Q/\left\{1,-1\right\}\thickapprox V} 其中{\displaystyle Q} |
||
同构于 | |||||
群论 | |||||
∝
|
正比 | {\displaystyle G\propto H} |
若{\displaystyle Q\propto V} |
||
正比于 | |||||
所有领域 |
参见[编辑]
1、几何符号
⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △
2、代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号
∪ ∩ ∈
5、特殊符号
∑ π(圆周率)
6、推理符号
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指数0123:o123
7、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆ ⊂ ⊇ ⊃”是“包含”符号等。
9、结合符号
如小括号“()”中括号“[]”,大括号“{}”横线“—”
10、性质符号
如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
11、省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘 ,如5!=5×4×3×2×1=120
C-Combination- 组合
A-Arrangement-排列
13、离散数学符号
├ 断定符(公式在L中可证)
╞ 满足符(公式在E上有效,公式在E上可满足)
┐ 命题的“非”运算
∧ 命题的“合取”(“与”)运算
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算( “与非门” )
↓ 命题的“或非”运算( “或非门” )
□ 模态词“必然”
◇ 模态词“可能”
φ 空集
∈ 属于(??不属于)
P(A) 集合A的幂集
|A| 集合A的点数
R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”
(或下面加 ≠) 真包含
∪ 集合的并运算
∩ 集合的交运算
- (~) 集合的差运算
〡 限制
[X](右下角R) 集合关于关系R的等价类
A/ R 集合A上关于R的商集
[a] 元素a 产生的循环群
I (i大写) 环,理想
Z/(n) 模n的同余类集合
r(R) 关系 R的自反闭包
s(R) 关系 的对称闭包
CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合
domf 函数 的定义域(前域)
ranf 函数 的值域
f:X→Y f是X到Y的函数
GCD(x,y) x,y最大公约数
LCM(x,y) x,y最小公倍数
aH(Ha) H 关于a的左(右)陪集
Ker(f) 同态映射f的核(或称 f同态核)
[1,n] 1到n的整数集合
d(u,v) 点u与点v间的距离
d(v) 点v的度数
G=(V,E) 点集为V,边集为E的图
W(G) 图G的连通分支数
k(G) 图G的点连通度
△(G) 图G的最大点度
A(G) 图G的邻接矩阵
P(G) 图G的可达矩阵
M(G) 图G的关联矩阵
C 复数集
N 自然数集(包含0在内)
N* 正自然数集
P 素数集
Q 有理数集
R 实数集
Z 整数集
Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴