linyawen

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

本文介绍了Python对于线程的支持,包括“学会”多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例。

注意:本文基于Python2.4完成,;如果看到不明白的词汇请记得百度谷歌或维基,whatever。

尊重作者的劳动,转载请注明作者及原文地址 >.<

1. 线程基础

1.1. 线程状态

线程有5种状态,状态转换的过程如下图所示:

thread_stat_simple

1.2. 线程同步(锁)

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

线程与锁的交互如下图所示:

thread_lock

1.3. 线程通信(条件变量)

然而还有另外一种尴尬的情况:列表并不是一开始就有的;而是通过线程"create"创建的。如果"set"或者"print" 在"create"还没有运行的时候就访问列表,将会出现一个异常。使用锁可以解决这个问题,但是"set"和"print"将需要一个无限循环——他们不知道"create"什么时候会运行,让"create"在运行后通知"set"和"print"显然是一个更好的解决方案。于是,引入了条件变量。

条件变量允许线程比如"set"和"print"在条件不满足的时候(列表为None时)等待,等到条件满足的时候(列表已经创建)发出一个通知,告诉"set" 和"print"条件已经有了,你们该起床干活了;然后"set"和"print"才继续运行。

线程与条件变量的交互如下图所示:

thread_condition_wait  

thread_condition_notify

1.4. 线程运行和阻塞的状态转换

最后看看线程运行和阻塞状态的转换。

thread_stat

阻塞有三种情况: 
同步阻塞是指处于竞争锁定的状态,线程请求锁定时将进入这个状态,一旦成功获得锁定又恢复到运行状态; 
等待阻塞是指等待其他线程通知的状态,线程获得条件锁定后,调用“等待”将进入这个状态,一旦其他线程发出通知,线程将进入同步阻塞状态,再次竞争条件锁定; 
而其他阻塞是指调用time.sleep()、anotherthread.join()或等待IO时的阻塞,这个状态下线程不会释放已获得的锁定。

tips: 如果能理解这些内容,接下来的主题将是非常轻松的;并且,这些内容在大部分流行的编程语言里都是一样的。(意思就是非看懂不可 >_< 嫌作者水平低找别人的教程也要看懂)

2. thread

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

01 # encoding: UTF-8
02 import thread
03 import time
04  
05 # 一个用于在线程中执行的函数
06 def func():
07     for in range(5):
08         print 'func'
09         time.sleep(1)
10     
11     # 结束当前线程
12     # 这个方法与thread.exit_thread()等价
13     thread.exit() # 当func返回时,线程同样会结束
14         
15 # 启动一个线程,线程立即开始运行
16 # 这个方法与thread.start_new_thread()等价
17 # 第一个参数是方法,第二个参数是方法的参数
18 thread.start_new(func, ()) # 方法没有参数时需要传入空tuple
19  
20 # 创建一个锁(LockType,不能直接实例化)
21 # 这个方法与thread.allocate_lock()等价
22 lock = thread.allocate()
23  
24 # 判断锁是锁定状态还是释放状态
25 print lock.locked()
26  
27 # 锁通常用于控制对共享资源的访问
28 count = 0
29  
30 # 获得锁,成功获得锁定后返回True
31 # 可选的timeout参数不填时将一直阻塞直到获得锁定
32 # 否则超时后将返回False
33 if lock.acquire():
34     count += 1
35     
36     # 释放锁
37     lock.release()
38  
39 # thread模块提供的线程都将在主线程结束后同时结束
40 time.sleep(6)

thread 模块提供的其他方法: 
thread.interrupt_main(): 在其他线程中终止主线程。 
thread.get_ident(): 获得一个代表当前线程的魔法数字,常用于从一个字典中获得线程相关的数据。这个数字本身没有任何含义,并且当线程结束后会被新线程复用。

thread还提供了一个ThreadLocal类用于管理线程相关的数据,名为 thread._local,threading中引用了这个类。

由于thread提供的线程功能不多,无法在主线程结束后继续运行,不提供条件变量等等原因,一般不使用thread模块,这里就不多介绍了。

3. threading

threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。Python Thread提供了Java Thread的行为的子集;没有优先级、线程组,线程也不能被停止、暂停、恢复、中断。Java Thread中的部分被Python实现了的静态方法在threading中以模块方法的形式提供。

threading 模块提供的常用方法: 
threading.currentThread(): 返回当前的线程变量。 
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading模块提供的类:  
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local.

3.1. Thread

Thread是线程类,与Java类似,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():

01 # encoding: UTF-8
02 import threading
03  
04 # 方法1:将要执行的方法作为参数传给Thread的构造方法
05 def func():
06     print 'func() passed to Thread'
07  
08 = threading.Thread(target=func)
09 t.start()
10  
11 # 方法2:从Thread继承,并重写run()
12 class MyThread(threading.Thread):
13     def run(self):
14         print 'MyThread extended from Thread'
15  
16 = MyThread()
17 t.start()

构造方法: 
Thread(group=None, target=None, name=None, args=(), kwargs={}) 
group: 线程组,目前还没有实现,库引用中提示必须是None; 
target: 要执行的方法; 
name: 线程名; 
args/kwargs: 要传入方法的参数。

实例方法: 
isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。 
get/setName(name): 获取/设置线程名。 
is/setDaemon(bool): 获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。 
start(): 启动线程。 
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。

一个使用join()的例子:

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 def context(tJoin):
06     print 'in threadContext.'
07     tJoin.start()
08     
09     # 将阻塞tContext直到threadJoin终止。
10     tJoin.join()
11     
12     # tJoin终止后继续执行。
13     print 'out threadContext.'
14  
15 def join():
16     print 'in threadJoin.'
17     time.sleep(1)
18     print 'out threadJoin.'
19  
20 tJoin = threading.Thread(target=join)
21 tContext = threading.Thread(target=context, args=(tJoin,))
22  
23 tContext.start()

运行结果:

in threadContext. 
in threadJoin. 
out threadJoin. 
out threadContext.

3.2. Lock

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法: 
Lock()

实例方法: 
acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。 
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 data = 0
06 lock = threading.Lock()
07  
08 def func():
09     global data
10     print '%s acquire lock...' % threading.currentThread().getName()
11     
12     # 调用acquire([timeout])时,线程将一直阻塞,
13     # 直到获得锁定或者直到timeout秒后(timeout参数可选)。
14     # 返回是否获得锁。
15     if lock.acquire():
16         print '%s get the lock.' % threading.currentThread().getName()
17         data += 1
18         time.sleep(2)
19         print '%s release lock...' % threading.currentThread().getName()
20         
21         # 调用release()将释放锁。
22         lock.release()
23  
24 t1 = threading.Thread(target=func)
25 t2 = threading.Thread(target=func)
26 t3 = threading.Thread(target=func)
27 t1.start()
28 t2.start()
29 t3.start()

3.3. RLock

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法: 
RLock()

实例方法: 
acquire([timeout])/release(): 跟Lock差不多。

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 rlock = threading.RLock()
06  
07 def func():
08     # 第一次请求锁定
09     print '%s acquire lock...' % threading.currentThread().getName()
10     if rlock.acquire():
11         print '%s get the lock.' % threading.currentThread().getName()
12         time.sleep(2)
13         
14         # 第二次请求锁定
15         print '%s acquire lock again...' % threading.currentThread().getName()
16         if rlock.acquire():
17             print '%s get the lock.' % threading.currentThread().getName()
18             time.sleep(2)
19         
20         # 第一次释放锁
21         print '%s release lock...' % threading.currentThread().getName()
22         rlock.release()
23         time.sleep(2)
24         
25         # 第二次释放锁
26         print '%s release lock...' % threading.currentThread().getName()
27         rlock.release()
28  
29 t1 = threading.Thread(target=func)
30 t2 = threading.Thread(target=func)
31 t3 = threading.Thread(target=func)
32 t1.start()
33 t2.start()
34 t3.start()

3.4. Condition

Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法: 
Condition([lock/rlock])

实例方法: 
acquire([timeout])/release(): 调用关联的锁的相应方法。 
wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。 
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。 
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

例子是很常见的生产者/消费者模式:

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 # 商品
06 product = None
07 # 条件变量
08 con = threading.Condition()
09  
10 # 生产者方法
11 def produce():
12     global product
13     
14     if con.acquire():
15         while True:
16             if product is None:
17                 print 'produce...'
18                 product = 'anything'
19                 
20                 # 通知消费者,商品已经生产
21                 con.notify()
22             
23             # 等待通知
24             con.wait()
25             time.sleep(2)
26  
27 # 消费者方法
28 def consume():
29     global product
30     
31     if con.acquire():
32         while True:
33             if product is not None:
34                 print 'consume...'
35                 product = None
36                 
37                 # 通知生产者,商品已经没了
38                 con.notify()
39             
40             # 等待通知
41             con.wait()
42             time.sleep(2)
43  
44 t1 = threading.Thread(target=produce)
45 t2 = threading.Thread(target=consume)
46 t2.start()
47 t1.start()

3.5. Semaphore/BoundedSemaphore

Semaphore(信号量)是计算机科学史上最古老的同步指令之一。Semaphore管理一个内置的计数器,每当调用acquire()时-1,调用release() 时+1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。

基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。

BoundedSemaphore 与Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

构造方法: 
Semaphore(value=1): value是计数器的初始值。

实例方法: 
acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。 
release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore。

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 # 计数器初值为2
06 semaphore = threading.Semaphore(2)
07  
08 def func():
09     
10     # 请求Semaphore,成功后计数器-1;计数器为0时阻塞
11     print '%s acquire semaphore...' % threading.currentThread().getName()
12     if semaphore.acquire():
13         
14         print '%s get semaphore' % threading.currentThread().getName()
15         time.sleep(4)
16         
17         # 释放Semaphore,计数器+1
18         print '%s release semaphore' % threading.currentThread().getName()
19         semaphore.release()
20  
21 t1 = threading.Thread(target=func)
22 t2 = threading.Thread(target=func)
23 t3 = threading.Thread(target=func)
24 t4 = threading.Thread(target=func)
25 t1.start()
26 t2.start()
27 t3.start()
28 t4.start()
29  
30 time.sleep(2)
31  
32 # 没有获得semaphore的主线程也可以调用release
33 # 若使用BoundedSemaphore,t4释放semaphore时将抛出异常
34 print 'MainThread release semaphore without acquire'
35 semaphore.release()

3.6. Event

Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。

Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。

构造方法: 
Event()

实例方法: 
isSet(): 当内置标志为True时返回True。 
set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。 
clear(): 将标志设为False。 
wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 event = threading.Event()
06  
07 def func():
08     # 等待事件,进入等待阻塞状态
09     print '%s wait for event...' % threading.currentThread().getName()
10     event.wait()
11     
12     # 收到事件后进入运行状态
13     print '%s recv event.' % threading.currentThread().getName()
14  
15 t1 = threading.Thread(target=func)
16 t2 = threading.Thread(target=func)
17 t1.start()
18 t2.start()
19  
20 time.sleep(2)
21  
22 # 发送事件通知
23 print 'MainThread set event.'
24 event.set()

3.7. Timer

Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。

构造方法: 
Timer(interval, function, args=[], kwargs={}) 
interval: 指定的时间 
function: 要执行的方法 
args/kwargs: 方法的参数

实例方法: 
Timer从Thread派生,没有增加实例方法。

1 # encoding: UTF-8
2 import threading
3  
4 def func():
5     print 'hello timer!'
6  
7 timer = threading.Timer(5, func)
8 timer.start()

3.8. local

local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。

01 # encoding: UTF-8
02 import threading
03  
04 local = threading.local()
05 local.tname = 'main'
06  
07 def func():
08     local.tname = 'notmain'
09     print local.tname
10  
11 t1 = threading.Thread(target=func)
12 t1.start()
13 t1.join()
14  
15 print local.tname

 

熟练掌握Thread、Lock、Condition就可以应对绝大多数需要使用线程的场合,某些情况下local也是非常有用的东西。本文的最后使用这几个类展示线程基础中提到的场景:

01 # encoding: UTF-8
02 import threading
03  
04 alist = None
05 condition = threading.Condition()
06  
07 def doSet():
08     if condition.acquire():
09         while alist is None:
10             condition.wait()
11         for in range(len(alist))[::-1]:
12             alist[i] = 1
13         condition.release()
14  
15 def doPrint():
16     if condition.acquire():
17         while alist is None:
18             condition.wait()
19         for in alist:
20             print i,
21         print
22         condition.release()
23  
24 def doCreate():
25     global alist
26     if condition.acquire():
27         if alist is None:
28             alist = [0 for in range(10)]
29             condition.notifyAll()
30         condition.release()
31  
32 tset = threading.Thread(target=doSet,name='tset')
33 tprint = threading.Thread(target=doPrint,name='tprint')
34 tcreate = threading.Thread(target=doCreate,name='tcreate')
35 tset.start()
36 tprint.start()
37 tcreate.start()

本文介绍了Python对于线程的支持,包括“学会”多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例。

注意:本文基于Python2.4完成,;如果看到不明白的词汇请记得百度谷歌或维基,whatever。

尊重作者的劳动,转载请注明作者及原文地址 >.<

1. 线程基础

1.1. 线程状态

线程有5种状态,状态转换的过程如下图所示:

thread_stat_simple

1.2. 线程同步(锁)

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

线程与锁的交互如下图所示:

thread_lock

1.3. 线程通信(条件变量)

然而还有另外一种尴尬的情况:列表并不是一开始就有的;而是通过线程"create"创建的。如果"set"或者"print" 在"create"还没有运行的时候就访问列表,将会出现一个异常。使用锁可以解决这个问题,但是"set"和"print"将需要一个无限循环——他们不知道"create"什么时候会运行,让"create"在运行后通知"set"和"print"显然是一个更好的解决方案。于是,引入了条件变量。

条件变量允许线程比如"set"和"print"在条件不满足的时候(列表为None时)等待,等到条件满足的时候(列表已经创建)发出一个通知,告诉"set" 和"print"条件已经有了,你们该起床干活了;然后"set"和"print"才继续运行。

线程与条件变量的交互如下图所示:

thread_condition_wait  

thread_condition_notify

1.4. 线程运行和阻塞的状态转换

最后看看线程运行和阻塞状态的转换。

thread_stat

阻塞有三种情况: 
同步阻塞是指处于竞争锁定的状态,线程请求锁定时将进入这个状态,一旦成功获得锁定又恢复到运行状态; 
等待阻塞是指等待其他线程通知的状态,线程获得条件锁定后,调用“等待”将进入这个状态,一旦其他线程发出通知,线程将进入同步阻塞状态,再次竞争条件锁定; 
而其他阻塞是指调用time.sleep()、anotherthread.join()或等待IO时的阻塞,这个状态下线程不会释放已获得的锁定。

tips: 如果能理解这些内容,接下来的主题将是非常轻松的;并且,这些内容在大部分流行的编程语言里都是一样的。(意思就是非看懂不可 >_< 嫌作者水平低找别人的教程也要看懂)

2. thread

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

01 # encoding: UTF-8
02 import thread
03 import time
04  
05 # 一个用于在线程中执行的函数
06 def func():
07     for in range(5):
08         print 'func'
09         time.sleep(1)
10     
11     # 结束当前线程
12     # 这个方法与thread.exit_thread()等价
13     thread.exit() # 当func返回时,线程同样会结束
14         
15 # 启动一个线程,线程立即开始运行
16 # 这个方法与thread.start_new_thread()等价
17 # 第一个参数是方法,第二个参数是方法的参数
18 thread.start_new(func, ()) # 方法没有参数时需要传入空tuple
19  
20 # 创建一个锁(LockType,不能直接实例化)
21 # 这个方法与thread.allocate_lock()等价
22 lock = thread.allocate()
23  
24 # 判断锁是锁定状态还是释放状态
25 print lock.locked()
26  
27 # 锁通常用于控制对共享资源的访问
28 count = 0
29  
30 # 获得锁,成功获得锁定后返回True
31 # 可选的timeout参数不填时将一直阻塞直到获得锁定
32 # 否则超时后将返回False
33 if lock.acquire():
34     count += 1
35     
36     # 释放锁
37     lock.release()
38  
39 # thread模块提供的线程都将在主线程结束后同时结束
40 time.sleep(6)

thread 模块提供的其他方法: 
thread.interrupt_main(): 在其他线程中终止主线程。 
thread.get_ident(): 获得一个代表当前线程的魔法数字,常用于从一个字典中获得线程相关的数据。这个数字本身没有任何含义,并且当线程结束后会被新线程复用。

thread还提供了一个ThreadLocal类用于管理线程相关的数据,名为 thread._local,threading中引用了这个类。

由于thread提供的线程功能不多,无法在主线程结束后继续运行,不提供条件变量等等原因,一般不使用thread模块,这里就不多介绍了。

3. threading

threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。Python Thread提供了Java Thread的行为的子集;没有优先级、线程组,线程也不能被停止、暂停、恢复、中断。Java Thread中的部分被Python实现了的静态方法在threading中以模块方法的形式提供。

threading 模块提供的常用方法: 
threading.currentThread(): 返回当前的线程变量。 
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading模块提供的类:  
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local.

3.1. Thread

Thread是线程类,与Java类似,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():

01 # encoding: UTF-8
02 import threading
03  
04 # 方法1:将要执行的方法作为参数传给Thread的构造方法
05 def func():
06     print 'func() passed to Thread'
07  
08 = threading.Thread(target=func)
09 t.start()
10  
11 # 方法2:从Thread继承,并重写run()
12 class MyThread(threading.Thread):
13     def run(self):
14         print 'MyThread extended from Thread'
15  
16 = MyThread()
17 t.start()

构造方法: 
Thread(group=None, target=None, name=None, args=(), kwargs={}) 
group: 线程组,目前还没有实现,库引用中提示必须是None; 
target: 要执行的方法; 
name: 线程名; 
args/kwargs: 要传入方法的参数。

实例方法: 
isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。 
get/setName(name): 获取/设置线程名。 
is/setDaemon(bool): 获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。 
start(): 启动线程。 
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。

一个使用join()的例子:

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 def context(tJoin):
06     print 'in threadContext.'
07     tJoin.start()
08     
09     # 将阻塞tContext直到threadJoin终止。
10     tJoin.join()
11     
12     # tJoin终止后继续执行。
13     print 'out threadContext.'
14  
15 def join():
16     print 'in threadJoin.'
17     time.sleep(1)
18     print 'out threadJoin.'
19  
20 tJoin = threading.Thread(target=join)
21 tContext = threading.Thread(target=context, args=(tJoin,))
22  
23 tContext.start()

运行结果:

in threadContext. 
in threadJoin. 
out threadJoin. 
out threadContext.

3.2. Lock

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法: 
Lock()

实例方法: 
acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。 
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 data = 0
06 lock = threading.Lock()
07  
08 def func():
09     global data
10     print '%s acquire lock...' % threading.currentThread().getName()
11     
12     # 调用acquire([timeout])时,线程将一直阻塞,
13     # 直到获得锁定或者直到timeout秒后(timeout参数可选)。
14     # 返回是否获得锁。
15     if lock.acquire():
16         print '%s get the lock.' % threading.currentThread().getName()
17         data += 1
18         time.sleep(2)
19         print '%s release lock...' % threading.currentThread().getName()
20         
21         # 调用release()将释放锁。
22         lock.release()
23  
24 t1 = threading.Thread(target=func)
25 t2 = threading.Thread(target=func)
26 t3 = threading.Thread(target=func)
27 t1.start()
28 t2.start()
29 t3.start()

3.3. RLock

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法: 
RLock()

实例方法: 
acquire([timeout])/release(): 跟Lock差不多。

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 rlock = threading.RLock()
06  
07 def func():
08     # 第一次请求锁定
09     print '%s acquire lock...' % threading.currentThread().getName()
10     if rlock.acquire():
11         print '%s get the lock.' % threading.currentThread().getName()
12         time.sleep(2)
13         
14         # 第二次请求锁定
15         print '%s acquire lock again...' % threading.currentThread().getName()
16         if rlock.acquire():
17             print '%s get the lock.' % threading.currentThread().getName()
18             time.sleep(2)
19         
20         # 第一次释放锁
21         print '%s release lock...' % threading.currentThread().getName()
22         rlock.release()
23         time.sleep(2)
24         
25         # 第二次释放锁
26         print '%s release lock...' % threading.currentThread().getName()
27         rlock.release()
28  
29 t1 = threading.Thread(target=func)
30 t2 = threading.Thread(target=func)
31 t3 = threading.Thread(target=func)
32 t1.start()
33 t2.start()
34 t3.start()

3.4. Condition

Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法: 
Condition([lock/rlock])

实例方法: 
acquire([timeout])/release(): 调用关联的锁的相应方法。 
wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。 
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。 
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

例子是很常见的生产者/消费者模式:

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 # 商品
06 product = None
07 # 条件变量
08 con = threading.Condition()
09  
10 # 生产者方法
11 def produce():
12     global product
13     
14     if con.acquire():
15         while True:
16             if product is None:
17                 print 'produce...'
18                 product = 'anything'
19                 
20                 # 通知消费者,商品已经生产
21                 con.notify()
22             
23             # 等待通知
24             con.wait()
25             time.sleep(2)
26  
27 # 消费者方法
28 def consume():
29     global product
30     
31     if con.acquire():
32         while True:
33             if product is not None:
34                 print 'consume...'
35                 product = None
36                 
37                 # 通知生产者,商品已经没了
38                 con.notify()
39             
40             # 等待通知
41             con.wait()
42             time.sleep(2)
43  
44 t1 = threading.Thread(target=produce)
45 t2 = threading.Thread(target=consume)
46 t2.start()
47 t1.start()

3.5. Semaphore/BoundedSemaphore

Semaphore(信号量)是计算机科学史上最古老的同步指令之一。Semaphore管理一个内置的计数器,每当调用acquire()时-1,调用release() 时+1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。

基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。

BoundedSemaphore 与Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

构造方法: 
Semaphore(value=1): value是计数器的初始值。

实例方法: 
acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。 
release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore。

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 # 计数器初值为2
06 semaphore = threading.Semaphore(2)
07  
08 def func():
09     
10     # 请求Semaphore,成功后计数器-1;计数器为0时阻塞
11     print '%s acquire semaphore...' % threading.currentThread().getName()
12     if semaphore.acquire():
13         
14         print '%s get semaphore' % threading.currentThread().getName()
15         time.sleep(4)
16         
17         # 释放Semaphore,计数器+1
18         print '%s release semaphore' % threading.currentThread().getName()
19         semaphore.release()
20  
21 t1 = threading.Thread(target=func)
22 t2 = threading.Thread(target=func)
23 t3 = threading.Thread(target=func)
24 t4 = threading.Thread(target=func)
25 t1.start()
26 t2.start()
27 t3.start()
28 t4.start()
29  
30 time.sleep(2)
31  
32 # 没有获得semaphore的主线程也可以调用release
33 # 若使用BoundedSemaphore,t4释放semaphore时将抛出异常
34 print 'MainThread release semaphore without acquire'
35 semaphore.release()

3.6. Event

Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。

Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。

构造方法: 
Event()

实例方法: 
isSet(): 当内置标志为True时返回True。 
set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。 
clear(): 将标志设为False。 
wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。

01 # encoding: UTF-8
02 import threading
03 import time
04  
05 event = threading.Event()
06  
07 def func():
08     # 等待事件,进入等待阻塞状态
09     print '%s wait for event...' % threading.currentThread().getName()
10     event.wait()
11     
12     # 收到事件后进入运行状态
13     print '%s recv event.' % threading.currentThread().getName()
14  
15 t1 = threading.Thread(target=func)
16 t2 = threading.Thread(target=func)
17 t1.start()
18 t2.start()
19  
20 time.sleep(2)
21  
22 # 发送事件通知
23 print 'MainThread set event.'
24 event.set()

3.7. Timer

Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。

构造方法: 
Timer(interval, function, args=[], kwargs={}) 
interval: 指定的时间 
function: 要执行的方法 
args/kwargs: 方法的参数

实例方法: 
Timer从Thread派生,没有增加实例方法。

1 # encoding: UTF-8
2 import threading
3  
4 def func():
5     print 'hello timer!'
6  
7 timer = threading.Timer(5, func)
8 timer.start()

3.8. local

local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。

01 # encoding: UTF-8
02 import threading
03  
04 local = threading.local()
05 local.tname = 'main'
06  
07 def func():
08     local.tname = 'notmain'
09     print local.tname
10  
11 t1 = threading.Thread(target=func)
12 t1.start()
13 t1.join()
14  
15 print local.tname

 

熟练掌握Thread、Lock、Condition就可以应对绝大多数需要使用线程的场合,某些情况下local也是非常有用的东西。本文的最后使用这几个类展示线程基础中提到的场景:

01 # encoding: UTF-8
02 import threading
03  
04 alist = None
05 condition = threading.Condition()
06  
07 def doSet():
08     if condition.acquire():
09         while alist is None:
10             condition.wait()
11         for in range(len(alist))[::-1]:
12             alist[i] = 1
13         condition.release()
14  
15 def doPrint():
16     if condition.acquire():
17         while alist is None:
18             condition.wait()
19         for in alist:
20             print i,
21         print
22         condition.release()
23  
24 def doCreate():
25     global alist
26     if condition.acquire():
27         if alist is None:
28             alist = [0 for in range(10)]
29             condition.notifyAll()
30         condition.release()
31  
32 tset = threading.Thread(target=doSet,name='tset')
33 tprint = threading.Thread(target=doPrint,name='tprint')
34 tcreate = threading.Thread(target=doCreate,name='tcreate')
35 tset.start()
36 tprint.start()
37 tcreate.start()
posted on 2011-10-27 17:15  linyawen  阅读(633)  评论(0编辑  收藏  举报