Python数据结构——二叉树的实现
1. 二叉树
二叉树(binary tree)中的每个节点都不能有多于两个的儿子。
1.1 二叉树列表实现
如上图的二叉树可用列表表示:
tree=['A', #root ['B', #左子树 ['D',[],[]], ['E',[],[]]], ['C', #右子树 ['F',[],[]], []] ]
实现:
def BinaryTree(item): return [item,[],[]] def insertLeft(tree,item): leftSubtree=tree.pop(1) if leftSubtree: tree.insert(1,[item,leftSubtree,[]]) else: tree.insert(1,[item,[],[]]) return tree def insertRight(tree,item): rightSubtree=tree.pop(2) if rightSubtree: tree.insert(2,[item,[],rightSubtree]) else: tree.insert(2,[item,[],[]]) return tree def getLeftChild(tree): return tree[1] def getRightChild(tree): return tree[2]
要实现下图的树:
tree=BinaryTree('a') insertLeft(tree,'b') insertRight(tree,'c') insertRight((getLeftChild(tree)),'d') insertLeft((getRightChild(tree)),'e') insertRight((getRightChild(tree)),'f')
1.2 二叉树的类实现
class BinaryTree(object): def __init__(self,item): self.key=item self.leftChild=None self.rightChild=None def insertLeft(self,item): if self.leftChild==None: self.leftChild=BinaryTree(item) else: t=BinaryTree(item) t.leftChild=self.leftChild self.leftChild=t def insertRight(self,item): if self.rightChild==None: self.rightChild=BinaryTree(item) else: t=BinaryTree(item) t.rightChild=self.rightChild self.rightChild=t
2. 表达式树
表达式树(expression tree)的树叶是操作数,其他节点为操作符。
图 ((7+3)*(5-2))的表达式树表示
2.1 根据中缀表达式构造表达式树:
遍历表达式:
1.建立一个空树
2.遇到'(',为当前的Node添加一个left child,并将left child当做当前Node。
3.遇到数字,赋值给当前的Node,并返回parent作为当前Node。
4.遇到('+-*/'),赋值给当前Node,并添加一个Node作为right child,将right child当做当前的Node。
5.遇到')',返回当前Node的parent。
def buildexpressionTree(exp): tree=BinaryTree('') stack=[] stack.append(tree) currentTree=tree for i in exp: if i=='(': currentTree.insertLeft('') stack.append(currentTree) currentTree=currentTree.leftChild elif i not in '+-*/()': currentTree.key=int(i) parent=stack.pop() currentTree=parent elif i in '+-*/': currentTree.key=i currentTree.insertRight('') stack.append(currentTree) currentTree=currentTree.rightChild elif i==')': currentTree=stack.pop() else: raise ValueError return tree
上述算法对中缀表达式的写法要求比较繁琐,小括号应用太多,例如要写成(a+(b*c))的形式。
用后缀表达式构建表达式树会方便一点:如果符号是操作数,建立一个单节点并将一个指向它的指针推入栈中。如果符号是一个操作符,从栈中弹出指向两棵树T1和T2的指针并形成一棵新的树,树的根为此操作符,左右儿子分别指向T2和T1.
def build_tree_with_post(exp): stack=[] oper='+-*/' for i in exp: if i not in oper: tree=BinaryTree(int(i)) stack.append(tree) else: righttree=stack.pop() lefttree=stack.pop() tree=BinaryTree(i) tree.leftChild=lefttree tree.rightChild=righttree stack.append(tree) return stack.pop()
3.树的遍历
3.1 先序遍历(preorder travelsal)
先打印出根,然后递归的打印出左子树、右子树,对应先缀表达式
def preorder(tree,nodelist=None): if nodelist is None: nodelist=[] if tree: nodelist.append(tree.key) preorder(tree.leftChild,nodelist) preorder(tree.rightChild,nodelist) return nodelist
3.2 中序遍历(inorder travelsal)
先递归的打印左子树,然后打印根,最后递归的打印右子树,对应中缀表达式
def inorder(tree): if tree: inorder(tree.leftChild) print tree.key inorder(tree.rightChild)
3.3 后序遍历(postorder travelsal)
递归的打印出左子树、右子树,然后打印根,对应后缀表达式
def postorder(tree): if tree: for key in postorder(tree.leftChild): yield key for key in postorder(tree.rightChild): yield key yield tree.key
3.4 表达式树的求值
def postordereval(tree): operators={'+':operator.add,'-':operator.sub,'*':operator.mul,'/':operator.truediv} leftvalue=None rightvalue=None if tree: leftvalue=postordereval(tree.leftChild) rightvalue=postordereval(tree.rightChild) if leftvalue and rightvalue: return operators[tree.key](leftvalue,rightvalue) else: return tree.key