序列化模块

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。

比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)

 

序列化的目的
1、以某种存储形式使自定义对象持久化;(例如:存储在文件中)
2、将对象从一个地方传递到另一个地方;(例如:在网络上传递)
3、使程序更具维护性。

 

一、序列化之Json模块
Json模块提供了四个功能:dumps、dump、loads、load
dumps loads 字符串 和 其他基础数据类型之间转换
dump load 文件 和 其他基础数据类型之间转换

dumps loads 字符串 和 其他基础数据类型之间转换

import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic)  #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic)  #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的
dic2 = json.loads(str_dic)  #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2)  #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}


list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]

  

 

import json
# 坑1:json格式规定字典所有的key必须是字符串数据类型,否者经过dumps - loads 所以的key默认变成字符串数据类型
dic = {1:2}
ret = json.dumps(dic)
print(dic[1])
print(ret)
new_dic = json.loads(ret)
print(new_dic)

# 坑2 : json中的所有tuple都会被当作list处理
dic = (1,2,3)
ret = json.dumps(dic)
print(ret)
new_dic = json.loads(ret)
print(new_dic)

dic = {1:(1,2,3)}
ret = json.dumps(dic)
print(ret)
new_dic = json.loads(ret)
print(new_dic)

# 特性3: json能支持的数据类型非常有限,字符串 数字 列表 字典
dic = {(1,2):(1,2,3)}
ret = json.dumps(dic)
print(dic)
new_dic = json.loads(ret)
print(new_dic)

  


dump load 文件 和 其他基础数据类型之间转换

import json

f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f)  #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close()

f = open('json_file')
dic2 = json.load(f)  #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)

# json不可以dump多次(虽然可以dump多次,但是:由于dump多次之后,当loads时不知道是多少次或报错,所以干脆就说dump不可以多次)
dic = {"key":"value"}
with open('json_file2','w') as f:
    json.dump(dic,f)
    json.dump(dic,f)

str_dic = {"name": "alex","sex":None}
ret = json.dumps(str_dic)
with open('json_file2','w') as f:
    f.write(ret+'\n')

  

 


dumps与dump的ensure_ascii关键字参数

在使用json.dumps时要注意一个问题
>>> import json
>>> print json.dumps('中国')
"\u4e2d\u56fd" 
输出的会是
'中国' 中的ascii 字符码,而不是真正的中文。
这是因为json.dumps 序列化时对中文默认使用的ascii编码.想输出真正的中文需要指定ensure_ascii=False:
>>> import json
>>> print json.dumps('中国')
"\u4e2d\u56fd"
>>> print json.dumps('中国',ensure_ascii=False)
"中国"
>>>

 

import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close()

  

dumps与dump的其它参数

Serialize obj to a JSON formatted str.(将obj序列化为JSON格式的str 即 字符串表示的json对象)
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。)
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse).
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity).
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError.
sort_keys:将数据根据keys的值进行排序。
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.

 

import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)

  

 


二、序列化之pickle模块
pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化)
pickle
1.支持几乎所有python中的数据类型
2.只在python语言中通用
3.pickle适合bytes类型打交道的

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic)  #一串二进制内容

dic2 = pickle.loads(str_dic)
print(dic2)    #字典

import time
struct_time  = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close()

f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)

  

 

import pickle
# s = {1,2,3,4}
# s = {1:2,3:4}
s = {(1,2,3):2,3:4}
result = pickle.dumps(s)
print(result)
with open('pickle_file','wb') as f:
    f.write(result)
new_s = pickle.loads(result)
print('new_s :',new_s)

with open('pickle_file','rb') as f:
    content = f.read()
ret = pickle.loads(content)
print(ret,type(ret))

# pickle 可以支持多个对象放入文件
s1 = {1,2,3}
s2 = {1:2,3:4}
s3 = ['k','v',(1,2,3),4]
with open('pickle_file2','wb') as f:
    pickle.dump(s1,f)
    pickle.dump(s2,f)
    pickle.dump(s3,f)

with open('pickle_file2','rb') as f:
    count = 1
    while count <= 3:
        try:
            content = pickle.load(f)
            print(content)
            count += 1
        except EOFError:
            break
			

  


三、pickle和json的区别

这时候机智的你又要说了,既然pickle如此强大,为什么还要学json呢?
这里我们要说明一下,json是一种所有(大多数高级)的语言都可以识别的数据结构。
如果我们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也可以拿来用。
但是如果我们用pickle进行序列化,其他语言就不能读懂这是什么了~
所以,如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块
但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle

json
如果你是要跨平台沟通,那么推荐使用json
key只能是字符串
不能多次load和dump
支持的数据类型有限

pickle
如果你是只在python程序之间传递消息,并且要传递的消息是比较特殊的数据类型
处理文件的时候 rb/wb
支持多次dump/load


json,用于字符串 和 python数据类型间进行转换
pickle,用于python特有的类型 和 python的数据类型间进行转换

 



 

posted @ 2019-01-29 17:16  冥想心灵  阅读(189)  评论(0编辑  收藏  举报