时间复杂度O(n^2)和O(nlog n)差距有多大?
0. 时间复杂度
接触到算法的小伙伴们都会知道时间复杂度(Time Complexity)的概念,这里先放出(渐进)时间复杂度的定义:
假设问题规模是\(n\),算法中基本操作重复执行的次数是\(n\)的某个函数,用\(T(n)\)表示,若有某个辅助函数\(f(n)\),使得
其中\(c\)为不等于零的常数,则称\(f(n)\)是\(T(n)\)的同数量级函数。记作\(T(n)=O(f(n))\),称\(O(f(n))\) 为算法的渐进时间复杂度,简称时间复杂度。
常见的时间复杂度有(表格越靠后表示越不理想):
复杂度 | 名称 |
---|---|
\(O(1)\) | 常数阶 |
\(O(\log n)\) | 对数阶 |
\(O(n)\) | 线性阶 |
\(O(n\log n)\) | 线性对数阶 |
\(O(n^2)\) | 平方阶 |
\(O(n^3)\) | 立方阶 |
\(O(n^k)\) | \(k\)次方阶(\(k>3\)且\(k\in Z\)) |
\(O(2^n)\) | 指数阶 |
例如,我们熟悉的插入排序(Insertion Sort)算法的时间复杂度是\(O(n^2)\),而合并排序(Merge Sort)算法的时间复杂度是\(O(n\log n)\)
那么这些复杂度之间的差距是怎么样的呢?有些小伙伴会疑问,自己写的算法虽然是高复杂度但是也用的好好的,为什么要纠结于这个概念呢?
我们不妨来探索一下今天的问题:\(O(n^2)\)和\(O(n\log n)\)差距有多大?
1. \(O(n^2)\)和\(O(n\log n)\)差距有多大?
我们知道,插入排序(Insertion Sort)算法的时间复杂度是\(O(n^2)\),而合并排序(Merge Sort)算法的时间复杂度是\(O(n\log n)\),即当排序\(n\)个对象时,插入排序算法需要用时大约\(c_1n^2\),而合并排序算法需要用时大约\(c_2n\log{n}\),其中\(c_1\)和\(c_2\)都是正常数且与\(n\)无关,且往往\(c_1<c_2\)。
稍微利用初等数学的知识,可以知道,对于任何\(n>=2\),比较约\(c_1n^2\)和\(c_2n\log{n}\)即比较\(c_1n\)和\(c_2\log{n}\)。由于我们已知
以及
想要比较这两个值的大小,直观的看法就是比较两个不等式谁的差别“更多”。可以证明,当无论\(c_1\)和\(c_2\)差别多么显著,总存在充分大的\(N\)使得当\(n>N\)时,\(c_1n>c_2\log{n}\)。
在Introduction to Algorithms中,作者举了一个很有趣的例子:
假设针对同一排序问题,用一台很快的电脑A运行插入排序,用一台很慢的电脑B运行合并排序,问题规模\(n=10^7\):
两台电脑的差别如下,为了使A比B优势显著,作者假设电脑A性能比B强1000倍,并且B运行的代码更低效、且编译器更差(导致需要运行更多的指令):
电脑A | 电脑B | |
---|---|---|
每秒运行指令数 | \(10^{10}\) | \(10^7\) |
需要运行的指令总数 | \(2n^2\) | \(50n\log n\) |
这样,A完成任务需要:
而B完成任务需要:
可以看到,在这样的大规模的问题下,即便B计算机与A差距巨大,最终也只用了20分钟左右就完成排序,而A却需要5.5小时来完成。时间复杂度的差距可见一斑。
3. 总结
算法时间复杂度的量级差异,也许在小规模的问题下,表现差别不大。但是时间复杂度高的算法,对问题规模的变化更加敏感,因而当问题的规模变得很大的时候,靠拥有高阶时间复杂度的算法来求解并不可靠!
(更新)我从网络上找到了一个直观的各个阶的复杂度的对比,大家不妨参考一下:
# 喜欢就点个赞、关注支持一下吧!
参考:
Thomas H. Cormen, et al., Introduction to Algorithms Part I 1.2
http://www.bigocheatsheet.com