pat 甲级 1064 ( Complete Binary Search Tree ) (数据结构)
1064 Complete Binary Search Tree (30 分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
重点在递归的过程建树
详见代码:
#include <iostream>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
int a[1005];
int cnt[12]={-1,1,3,7,15,31,63,127,255,511,1023};
struct node
{
int v;
node *left=NULL,*right=NULL;
};
int mypow(int a,int b)
{
int res=1;
while(b--)res*=a;
return res;
}
node* build(int l,int r,int num)
{
if(l>r){return NULL;}
if(l==r)
{
node *tt=new node();tt->v=a[l];
return tt;
}
if(num<=0)return NULL;
node *thi;
int k1=0;
while(cnt[k1+1]<num)k1++;
int k2=k1+1;
int rr=num-(cnt[k1]);
int tmp=mypow(2,k2-2);
if(rr>=tmp)
{
int lnum=cnt[k1];
int rnum=num-lnum-1;
int id=l+lnum;
thi=new node();
thi->v=a[id];
thi->left=build(l,id-1,lnum);
thi->right=build(id+1,r,rnum);
}
else {
int lnum=num-1-cnt[k1-1];
int rnum=cnt[k1-1];
int id=l+lnum;
thi=new node();thi->v=a[id];
thi->left=build(l,id-1,lnum);
thi->right=build(id+1,r,rnum);
}
return thi;
}
int main()
{
//freopen("in.txt","r",stdin);
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
sort(a+1,a+1+n);
int l=1;int r=n;
node *head=build(l,r,n);
queue< node* >q;
while(!q.empty())q.pop();
q.push(head);
vector<int>ans;ans.clear();
node *now;
while(!q.empty())
{
now=q.front();q.pop();
ans.push_back(now->v);
if(now->left!=NULL)q.push(now->left);
if(now->right!=NULL)q.push(now->right);
}
for(int i=0;i<ans.size();i++)
{
cout<<ans[i];if(i!=ans.size()-1)cout<<" ";
}
cout<<endl;
return 0;
}