当你发现自己的才华撑不起野心时,就请安静下来学习吧。

Personal site

↑点击传送

scrapy 框架

scrapy爬虫框架

介绍

#通用的网络爬虫框架,相对于爬虫界的django

#scrapy执行流程
	5大组件
    	-引擎(EGINE):大总管,负责控制数据的流向
        -调度器(SCHEDULER):由它来决定下一个要抓取的网址是什么,去重
        -下载器(DOWLOADER):用于下载网页内容, 并将网页内
        容返回给EGINE,下载器是建立在twisted这个高效的异步模型上的
        -爬虫(SPIDERS):开发人员自定义的类,用来解析responses,并且提取items,或者发送新的请求request
        -项目管道(ITEM PIPLINES):在items被提取后负责处理它们,主要包括清理、验证、持久化(比如存到数据库)等操作
	2大中间件
    	-爬虫中间件:位于EGINE和SPIDERS之间,主要工作是处理SPIDERS的输入和输出(用的很少)
        -下载中间件:引擎和下载器之间,加代理,加头,集成selenium
        
#开发者只需要在固定位置写固定代码即可,写的最多的是spider        

安装

#1 pip3 install scrapy(mac,linux)

#2 windows上(80%能成功,少部分人成功不了)
	1、pip3 install wheel #安装后,便支持通过wheel文件安装软件,wheel文件官网:https://www.lfd.uci.edu/~gohlke/pythonlibs
    
    3、pip3 install lxml
    
    4、pip3 install pyopenssl
    
    5、下载并安装pywin32:#pip3 install pywin32
    https://sourceforge.net/projects/pywin32/files/pywin32/
        
    6、下载twisted的wheel文件:		http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
        
    7、执行pip3 install 下载目录\Twisted-17.9.0-cp36-cp36m-win_amd64.whl
    
    8、pip3 install scrapy
    
# 3 就有scrapy命令
	-D:\Python36\Scripts\scrapy.exe  用于创建项目

scrapy创建项目、创建爬虫、运行爬虫

1 scrapy startproject 项目名
	-scrapy startproject firstscrapy
    
2 创建爬虫
	-cd 项目名
	-scrapy genspider 爬虫名 爬虫地址
    -scrapy genspider chouti dig.chouti.com
    -一执行就会在spider文件夹下创建出一个py文件,名字叫chouti
    
3 运行爬虫,settings.py的ROBOTSTXT_OBEY改为False,不遵从爬虫协议,看下图
	-scrapy crawl chouti   # 带运行日志
    -scrapy crawl chouti --nolog  # 不带日志
    
4 支持右键执行爬虫
	-在项目路径下新建一个main.py
    from scrapy.cmdline import execute
	execute(['scrapy','crawl','chouti','--nolog'])

目录介绍

tiktok# 项目名字
	scrapy.cfg# 上线相关
    tiktok# 包
    	__init__.py
    	items.py # 一个一个的类,
        main.py# 自己加的,执行爬虫,启动文件
        middlewares.py# 中间件(爬虫,下载中间件都写在这)
        pipelines.py # 持久化相关写在这(items.py中类的对象)
        settings.py # 配置文件
        spiders# 所有的爬虫文件放在里面
            __init__.py
            baidu.py# 一个个的爬虫(以后基本上都在这写东西)

settings介绍

1 默认情况,scrapy会去遵循爬虫协议

2 修改配置文件参数,强行爬取,不遵循协议
	ROBOTSTXT_OBEY = False
    
3 USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'	#修改自己的客户端信息

4 LOG_LEVEL='ERROR'	#设置日志级别

爬取抽屉新闻

#firstscrapy\spiders\chouti.py
import scrapy
from firstscrapy.items import ChoutiItem
class ChoutiSpider(scrapy.Spider):
    name = 'chouti'
    allowed_domains = ['dig.chouti.com']
    start_urls = ['http://dig.chouti.com/']

    def parse(self, response):

        div_list = response.xpath('//div[contains(@class,"link-item")]')
        for div in div_list:
            item = ChoutiItem()	#获得item对象
            title = div.css('.link-title::text').extract_first()
            url = div.css('.link-title::attr(href)').extract_first()
            photo_url = div.css('.image-scale::attr(src)').extract_first()
            if not photo_url:
                photo_url = ''
            # item.title=title      #必须要['key'] = val的形式
            # item.url=url
            # item.photo_url=photo_url
            item['title'] = title
            item['news_url'] = url
            item['img'] = photo_url
            yield item  #一定要放在for里,不然只执行一次

#firstscrapy\pipelines.py            
class FirstscrapyPipeline(object):

    # 开始会执行,创建mysql连接
    def open_spider(self, spider):
        import pymysql
        self.conn_mysql = pymysql.connect(host='127.0.0.1',
                                          port=3306,
                                          user='root',
                                          password='123',
                                          db='chouti',
                                          charset='utf8')
        import redis
        self.i =0
        self.conn_redis = redis.Redis(host='127.0.0.1', port=6379)

    # 结束会执行
    def close_spider(self, spider):
        print('写入完成')
        self.conn_mysql.close()

    # 持久化,写入mysql、redis库
    def process_item(self, item, spider):
        # mysql
        cursor = self.conn_mysql.cursor()
        sql = 'insert into article(title,img,news_url) values(%s,%s,%s)'
        # 'insert into article (title,url,photo_url)values(%s,%s,%s) '
        cursor.execute(sql, [item['title'], item['img'], item['news_url']])
        print(item['title'])
        self.conn_mysql.commit()

        # redis
        self.conn_redis.hmset(name=f'article{self.i}',
                              mapping={'title': item['title'], 'img': item['img'],
                                       'news_url': item['news_url']})
        self.i += 1
        return item    
    
#firstscrapy\items.py	#原来item实例化的类

import scrapy


class ChoutiItem(scrapy.Item):
    title = scrapy.Field()
    img = scrapy.Field()
    news_url = scrapy.Field()
    
#firstscrapy\main.py    #启动文件

from scrapy.cmdline import execute

execute(['scrapy', 'crawl', 'chouti'])

#firstscrapy\settings.py配置

USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'
ROBOTSTXT_OBEY = False
LOG_LEVEL='ERROR'	#打印日志的级别

scrapy数据解析(重点)

#xpath:
    -response.xpath('//a[contains(@class,"link-title")]/text()').extract()  # 取文本
    -response.xpath('//a[contains(@class,"link-title")]/@href').extract()  #取属性
#css
    -response.css('.link-title::text').extract()  # 取文本
    -response.css('.link-title::attr(href)').extract_first()  # 取属性

scrapy数据持久化储存(重点)

#1 方案一:parser函数必须返回列表套字典的形式(了解),用的少
    
#2 方案二:高级,pipline item存储(mysql,redis,文件)
	-在Items.py中写一个类
    -在spinder中导入,实例化,把数据放进去
    	    item['title']=title
            item['url']=url
            item['photo_url']=photo_url
            yield item
            
    -在setting中配置(数字越小,级别越高)b'b'v
    	ITEM_PIPELINES = {
   		'firstscrapy.pipelines.ChoutiFilePipeline': 300,
		}
    -在pipelines.py中写ChoutiFilePipeline
    	-open_spider(开始的时候)
        -close_spider(结束的时候)
        -process_item(在这持久化)

自动给抽屉新闻点赞

from selenium import webdriver
import time
import requests

bro = webdriver.Chrome(executable_path='./chromedriver.exe')#指定浏览器驱动
bro.implicitly_wait(10)#隐士等待
bro.get('https://dig.chouti.com/')
bro.maximize_window()  # 最大化窗口
login_b = bro.find_element_by_id('login_btn')
# print(login_b)
login_b.click()

username = bro.find_element_by_name('phone')
username.send_keys('18666550526')
password = bro.find_element_by_name('password')
password.send_keys('******')

button = bro.find_element_by_css_selector('button.login-btn')
button.click()
# 可能有验证码,手动操作一下
time.sleep(10)

my_cookie = bro.get_cookies()  # 列表
print(my_cookie)
bro.close()

# 这个cookie不是一个字典,不能直接给requests使用,需要转一下
cookie = {}
for item in my_cookie:
    cookie[item['name']] = item['value']

headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36',
    'Referer': 'https://dig.chouti.com/'}
# ret = requests.get('https://dig.chouti.com/',headers=headers)
# print(ret.text)


ret = requests.get('https://dig.chouti.com/top/24hr?_=1596677637670', headers=headers)
# print(ret.json())
ll = []
for item in ret.json()['data']:
    ll.append(item['id'])

print(ll)
#点赞
for id in ll:
    ret = requests.post(' https://dig.chouti.com/link/vote', headers=headers, cookies=cookie, data={'linkId': id})
    print(ret.text)

'https://dig.chouti.com/comments/create'
'''
content: 说的号
linkId: 29829529
parentId: 0

'''

全站爬取cnblogs

#secondscarpy\spiders\cnblogs.py
import scrapy

from secondscarpy.items import CnblogsItem
from scrapy import Request

class CnblogSpider(scrapy.Spider):
    name = 'cnblogs'
    allowed_domains = ['cnblogs.com']
    start_urls = ['https://www.cnblogs.com']

    def parse(self, response):
        div_list = response.css('article.post-item')
        for div in div_list:
            item = CnblogsItem()
            title = div.xpath('.//div[1]/a/text()').extract_first()
            item['title'] = title
            url = div.xpath('.//div[1]/a/@href').extract_first()
            item['url'] = url
            desc = div.xpath('.//div[1]/p/text()').extract_first().strip()
            item['desc'] = desc
            # 要继续爬取详情
            # callback如果不写,默认回调到parse方法
            # 如果写了,响应回来的对象就会调到自己写的解析方法中
            yield Request(url, callback=self.parser_detail, meta={'item': item})

        # 解析出下一页的地址
        next = 'https://www.cnblogs.com' + response.css('#paging_block>div a:last-child::attr(href)').extract_first()
        # print(next)
        yield Request(next)

    def parser_detail(self, response):
        content = response.css('#cnblogs_post_body').extract_first()
        # print(str(content))
        # item哪里来
        item = response.meta.get('item')
        item['content'] = content
        yield item

#secondscarpy\items.py
import scrapy


class CnblogsItem(scrapy.Item):
    title = scrapy.Field()
    url = scrapy.Field()
    desc = scrapy.Field()
    content = scrapy.Field()
    
#secondscarpy\pipelines.py
import pymysql


class SecondscarpyPipeline:
    def open_spider(self, spider):
        # 爬虫对象
        print('-------', spider.name)
        #统计爬取条数
        self.i  = 0
        self.conn = pymysql.connect(host='127.0.0.1', user='root', password="123", database='cnblogs', port=3306,
                                    autocommit=True)

    def process_item(self, item, spider):
        cursor = self.conn.cursor()
        sql = 'insert into article (title,url,content,`desc`) values (%s,%s,%s,%s)'
        cursor.execute(sql, [item['title'], item['url'], item['content'], item['desc']])
        # self.conn.commit()
        self.i += 1
        print(self.i)#打印爬取条数
        return item

    def close_spider(self, spider):
        self.conn.close()

#secondscarpy\settings.py配置下参数
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'  # 修改自己的客户端信息
LOG_LEVEL='ERROR'
ROBOTSTXT_OBEY = False

提升scrapy爬取数据的效率

- 在配置文件中settings.py进行相关的配置即可:(默认还有一套setting)
#1 增加并发:
默认scrapy开启的并发线程为32个,可以适当进行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100。
#2 降低日志级别:
在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。在配置文件中编写:LOG_LEVEL = ‘INFO’
# 3 禁止cookie:
如果不是真的需要cookie,则在scrapy爬取数据时可以禁止cookie从而减少CPU的使用率,提升爬取效率。在配置文件中编写:COOKIES_ENABLED = False
# 4禁止重试:
对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。在配置文件中编写:RETRY_ENABLED = False
# 5 减少下载超时:
如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。在配置文件中进行编写:DOWNLOAD_TIMEOUT = 10 超时时间为10s

scrapy下载中间件

# 1 都写在middlewares.py

# 2 爬虫中间件

# 3 下载中间件

# 4 要生效,一定要配置,配置文件

# 下载中间件内(SecondscarpyDownloaderMiddleware)
-process_request:返回不同的对象,后续处理不同(加代理...)
  		# 1 更换请求头
        # print(type(request.headers))
        # print(request.headers)
        #
        # from scrapy.http.headers import Headers
        # request.headers['User-Agent']=''

        # 2 加cookie ---cookie池
        # 假设你你已经搭建好cookie 池了,
        # print('00000--',request.cookies)
        # request.cookies={'username':'asdfasdf'}

        # 3 加代理
        # print(request.meta)
        # request.meta['download_timeout'] = 20
        # request.meta["proxy"] = 'http://27.188.62.3:8060'
        # return None
-process_response:返回不同的对象,后续处理不同
-process_exception:
def process_exception(self, request, exception, spider):
        print('xxxx')
        # 不允许直接改url
        # request.url='https://www.baidu.com'
        from scrapy import Request
        request=Request(url='https://www.baidu.com',callback=spider.parser)
        return request

selenium在scrapy中的使用流程

# 当前爬虫用的selenium是同一个

# 1 在爬虫中初始化webdriver对象

import scrapy
from selenium import webdriver
class CnblogSpider(scrapy.Spider):
    name = 'cnblogs'
    allowed_domains = ['cnblogs.com']
    start_urls = ['https://www.cnblogs.com']
    bro = webdriver.Chrome(executable_path='../chromedriver.exe')
    def parse(self, response):
        '''
        这里面写selenium操作即可
        :param response:
        :return:
        '''
        print(response.status)

# 2 在中间件中使用(process_request内)

spider.bro.get('https://dig.chouti.com/')   response=HtmlResponse(url='https://dig.chouti.com/',body=spider.bro.page_source.encode('utf-8'),request=request)
    return response
	
# 3 在爬虫中关闭
    def close(self, reason):
        print("我结束了")
        self.bro.close()

去重规则源码分析

# 去重源码分析
# from scrapy.core.scheduler import Scheduler
# Scheduler下:def enqueue_request(self, request)方法判断是否去重
    if not request.dont_filter and self.df.request_seen(request):
       Requests对象,RFPDupeFilter对象
# 如果要自己写一个去重类
  -写一个类,继承BaseDupeFilter类
  -重写def request_seen(self, request):
  -在setting中配置:DUPEFILTER_CLASS = '项目名.dup.UrlFilter'
            
          
-增量爬取(100链接,150个链接)
  -已经爬过的,放到某个位置(mysql,redis中:集合)
  -如果用默认的,爬过的地址,放在内存中,只要项目一重启,就没了,它也不知道我爬过那个了,所以要自己重写去重方案
-你写的去重方案,占得内存空间更小
    -bitmap方案
    -BloomFilter布隆过滤器
  
  
from scrapy.http import Request
from scrapy.utils.request import request_fingerprint

# 这种网址是一个
requests1=Request(url='https://www.baidu.com?name=lqz&age=19')
requests2=Request(url='https://www.baidu.com?age=18&name=lqz')

ret1=request_fingerprint(requests1)
ret2=request_fingerprint(requests2)
print(ret1)
print(ret2)

# bitmap去重  一个小格表示一个连接地址 32个连接,一个比特位来存一个地址
# https://www.baidu.com?age=18&name=lqz ---》44
# https://www.baidu.com?age=19&name=lqz ---》89
# c2c73dfccf73bf175b903c82b06a31bc7831b545假设它占4个bytes,4*8=32个比特位
# 存一个地址,占32个比特位
# 10个地址,占320个比特位
#计算机计量单位
# 比特位:只能存0和1


    def request_seen(self, request):
        # 把request对象传入request_fingerprint得到一个值:aefasdfeasd
        # 把request对象,唯一生成一个字符串
        fp = self.request_fingerprint(request)
        #判断fp,是否在集合中,在集合中,表示已经爬过,return True,他就不会再爬了
        if fp in self.fingerprints:
            return True
        # 如果不在集合中,放到集合中
        self.fingerprints.add(fp)
        if self.file:
            self.file.write(fp + os.linesep)

分布式爬虫、scrapr-redis

1 pip3 install scrapy-redis

2 原来继承Spider,现在继承RedisSpider

3 不用写statr_urls = ['https:/www.cnblogs.com/']

4 需要写redis_key = 'myspider:start_urls'

5 settings配置
# redis的连接
REDIS_HOST = 'localhost'                            # 主机名
REDIS_PORT = 6379                                   # 端口
#REDIS_PASS = 'redis@Pssw0rd'						#有密码加上
# 使用scrapy-redis的去重
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 使用scrapy-redis的Scheduler
# 分布式爬虫的配置
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 持久化的可以配置,也可以不配置
ITEM_PIPELINES = {
   'scrapy_redis.pipelines.RedisPipeline': 299	#可以写redis和mysql加上即可
}

#代码
#cn_redis\spiders\c_redis.py

from scrapy_redis.spiders import RedisSpider
from cn_redis.items import CnRedisItem
from scrapy import Request


class CnblogSpider(RedisSpider):
    name = 'cn_redis'
    allowed_domains = ['www.cnblogs.com']
    redis_key = 'myspider:start_urls'

    def parse(self, response):
        div_list = response.css('article.post-item')
        for div in div_list:
            item = CnRedisItem()
            title = div.xpath('.//div[1]/a/text()').extract_first()
            item['title'] = title
            url = div.xpath('.//div[1]/a/@href').extract_first()
            item['url'] = url
            desc = div.xpath('.//div[1]/p/text()').extract_first().strip()
            item['desc'] = desc
            # 要继续爬取详情
            # callback如果不写,默认回调到parse方法
            # 如果写了,响应回来的对象就会调到自己写的解析方法中
            yield Request(url, callback=self.parser_detail, meta={'item': item})

        # 解析出下一页的地址
        next = 'https://www.cnblogs.com' + response.css('#paging_block>div a:last-child::attr(href)').extract_first()
        print(next)
        yield Request(next)

    def parser_detail(self, response):
        content = response.css('#cnblogs_post_body').extract_first()
        # item哪里来
        item = response.meta.get('item')
        item['content'] = content
        yield item
        
#cn_redis\items.py

import scrapy


class CnRedisItem(scrapy.Item):
    title = scrapy.Field()
    url = scrapy.Field()
    desc = scrapy.Field()
    content = scrapy.Field()
    
#cn_redis\pipelines.py
import pymysql


class CnRedisPipeline(object):
    def open_spider(self, spider):
        # 爬虫对象
        print('-------', spider.name)
        # 统计爬取条数
        self.i = 0
        self.conn = pymysql.connect(host='127.0.0.1', user='root', password="123", database='cnblogs', port=3306,
                                    autocommit=True)

    def process_item(self, item, spider):
        cursor = self.conn.cursor()
        sql = 'insert into article (title,url,content,`desc`) values (%s,%s,%s,%s)'
        cursor.execute(sql, [item['title'], item['url'], item['content'], item['desc']])
        # self.conn.commit()
        self.i += 1
        print('已爬取条数', self.i)  # 打印爬取条数
        return item

    def close_spider(self, spider):
        self.conn.close()
        
#
# redis的连接
REDIS_HOST = 'localhost'  # 主机名
REDIS_PORT = 6379  # 端口
# REDIS_PASS = 'redis@Pssw0rd'						#有密码加上
# 使用scrapy-redis的去重
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 使用scrapy-redis的Scheduler
# 分布式爬虫的配置
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
LOG_LEVEL='ERROR'	#设置日志级别
ITEM_PIPELINES = {
    'cn_redis.pipelines.CnRedisPipeline': 300,
    'scrapy_redis.pipelines.RedisPipeline': 299  #
}
SPIDER_MIDDLEWARES = {
   'cn_redis.middlewares.CnRedisSpiderMiddleware': 543,
}
ROBOTSTXT_OBEY = False
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'
BOT_NAME = 'cn_redis'

SPIDER_MODULES = ['cn_redis.spiders']
NEWSPIDER_MODULE = 'cn_redis.spiders'

#启动方式
local:scrapy crawl cn_redis
local2:scrapy crawl cn_redis
local2:scrapy crawl cn_redis

cmd连接redis 添加爬取地址:lpush myspider:start_urls https://www.cnblogs.com/

破解知乎登录(js逆向和解密)

client_id=c3cef7c66a1843f8b3a9e6a1e3160e20&
grant_type=password&
timestamp=1596702006088&
source=com.zhihu.web&
signature=eac4a6c461f9edf86ef33ef950c7b6aa426dbb39&
username=%2B86liuqingzheng&
password=1111111&
captcha=&
lang=en&
utm_source=&
ref_source=other_https%3A%2F%2Fwww.zhihu.com%2Fsignin%3Fnext%3D%252F"


# 破解知乎登陆

import requests    #请求解析库

import base64							  #base64解密加密库
from PIL import Image	  			      #图片处理库
import hmac								  #加密库
from hashlib import sha1				  #加密库
import time
from urllib.parse import urlencode		  #url编码库
import execjs							  #python调用node.js
from http import cookiejar as cookielib
class Spider():
    def __init__(self):
        self.session = requests.session()
        self.session.cookies = cookielib.LWPCookieJar()    #使cookie可以调用save和load方法
        self.login_page_url = 'https://www.zhihu.com/signin?next=%2F'
        self.login_api = 'https://www.zhihu.com/api/v3/oauth/sign_in'
        self.captcha_api = 'https://www.zhihu.com/api/v3/oauth/captcha?lang=en'
        self.headers = {
            'user-agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.98 Safari/537.36 LBBROWSER',
        }

        self.captcha =''         #存验证码
        self.signature = ''	   #存签名

    # 首次请求获取cookie
    def get_base_cookie(self):
        self.session.get(url=self.login_page_url, headers=self.headers)

    def deal_captcha(self):
        r = self.session.get(url=self.captcha_api, headers=self.headers)
        r = r.json()
        if r.get('show_captcha'):
            while True:
                r = self.session.put(url=self.captcha_api, headers=self.headers)
                img_base64 = r.json().get('img_base64')
                with open('captcha.png', 'wb') as f:
                    f.write(base64.b64decode(img_base64))
                captcha_img = Image.open('captcha.png')
                captcha_img.show()
                self.captcha = input('输入验证码:')
                r = self.session.post(url=self.captcha_api, data={'input_text': self.captcha},
                                      headers=self.headers)
                if r.json().get('success'):
                    break

    def get_signature(self):
        # 生成加密签名
        a = hmac.new(b'd1b964811afb40118a12068ff74a12f4', digestmod=sha1)
        a.update(b'password')
        a.update(b'c3cef7c66a1843f8b3a9e6a1e3160e20')
        a.update(b'com.zhihu.web')
        a.update(str(int(time.time() * 1000)).encode('utf-8'))
        self.signature = a.hexdigest()

    def post_login_data(self):
        data = {
            'client_id': 'c3cef7c66a1843f8b3a9e6a1e3160e20',
            'grant_type': 'password',
            'timestamp': str(int(time.time() * 1000)),
            'source': 'com.zhihu.web',
            'signature': self.signature,
            'username': '+8618953675221',
            'password': '',
            'captcha': self.captcha,
            'lang': 'en',
            'utm_source': '',
            'ref_source': 'other_https://www.zhihu.com/signin?next=%2F',
        }

        headers = {
            'x-zse-83': '3_2.0',
            'content-type': 'application/x-www-form-urlencoded',
            'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.98 Safari/537.36 LBBROWSER',
        }

        data = urlencode(data)
        with open('zhih.js', 'rt', encoding='utf-8') as f:
            js = execjs.compile(f.read(), cwd='node_modules')
        data = js.call('b', data)

        r = self.session.post(url=self.login_api, headers=headers, data=data)
        print(r.text)
        if r.status_code == 201:
            self.session.cookies.save('mycookie')
            print('登录成功')
        else:
            print('登录失败')

    def login(self):
        self.get_base_cookie()
        self.deal_captcha()
        self.get_signature()
        self.post_login_data()
if __name__ == '__main__':
    zhihu_spider = Spider()
    zhihu_spider.login()





爬虫的反扒措施

1 user-agent
2 referer
3 cookie(cookie池,先访问一次)
4 频率限制(代理池,延迟)
5 js加密(扣出来,exjs模块指向)
6 css加密
7 验证码(打码平台),半手动
8 图片懒加载

布隆过滤器

from scrapy.dupefilters import BaseDupeFilter

class UrlFilter(BaseDupeFilter):
    def __init__(self):
        self.bloom = ScalableBloomFilter(initial_capacity=100, error_rate=0.001, mode=ScalableBloomFilter.LARGE_SET_GROWTH)

def request_seen(self, request):
    if request.url in self.bloom:
        return True
    self.bloom.add(request.url)
posted @ 2020-08-15 14:49  Joab-0429  阅读(203)  评论(0编辑  收藏  举报