Codeforces #614 div.2 (A-E)

A  ConneR and the A.R.C. Markland-N

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define ll long long
 4 #define inc(i, l, r) for (int i = l; i <= r; i++)
 5 
 6 int t, n, s, k, x;
 7 
 8 int main() {
 9     cin >> t;
10     while (t--) {
11         cin >> n >> s >> k;
12         map<int, int> m;
13         inc(i, 1, k) {
14             cin >> x;
15             m[x] = 1;
16         }
17         inc(del, 0, k) {
18             if ((s + del <= n && m[s + del] == 0) ||
19                 (s - del >= 1 && m[s - del] == 0)) {
20                 cout << del << "\n";
21                 break;
22             }
23         }
24     }
25 }
View Code

 

B  JOE is on TV!

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define ll long long
 4 #define inc(i, l, r) for (int i = l; i <= r; i++)
 5 
 6 int n;
 7 double r;
 8 
 9 int main() {
10     cin >> n;
11     for (int i = n; i >= 1; i--) r += 1.0 / i;
12     printf("%.12f", r);
13 }
View Code

 

C  NEKO's Maze Game

每个岩浆点的对面或斜对面如果也有岩浆点,那么这两点之间就会形成障碍,统计这种障碍的数量

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define ll long long
 4 #define inc(i, l, r) for (int i = l; i <= r; i++)
 5 
 6 const int maxn = 1e6 + 5;
 7 
 8 int a[3][maxn];
 9 int n, q, k, x, y;
10 
11 int main() {
12     cin >> n >> q;
13     inc(i, 0, q - 1) {
14         cin >> x >> y;
15         x--;
16         if (a[x][y] == 0) {
17             a[x][y] = 1;
18             inc(del, -1, 1) if (a[1 - x][y + del] == 1) k++;
19         } else {
20             a[x][y] = 0;
21             inc(del, -1, 1) if (a[1 - x][y + del] == 1) k--;
22         }
23         if(k) puts("NO");
24         else puts("YES");
25     }
26 }
View Code

 

D  Aroma's Search

分析点集的特点,可以知道每一个数据点都在下标比它小的数据点的右上方,而且离下一个数据点的距离 大于 离第0个数据点的距离。

枚举Aroma从哪个点出发;先往第0个数据点走,然后尽可能往右上走

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define ll long long
 4 #define inc(i, l, r) for (int i = l; i <= r; i++)
 5 
 6 const int maxn = 1e6 + 5;
 7 
 8 ll a0, b0, ax, bx, ay, by;
 9 ll xs, ys, t;
10 
11 ll dx[maxn], dy[maxn];
12 ll dis[maxn];
13 
14 int res;
15 
16 int main() {
17     cin >> a0 >> b0 >> ax >> ay >> bx >> by;
18     cin >> xs >> ys >> t;
19     ll tx = a0, ty = b0;
20     int top;
21     for (top = 0; tx <= 2e16 && ty <= 2e16; top++) {
22         dx[top] = tx, dy[top] = ty;
23         tx = tx * ax + bx, ty = ty * ay + by;
24     }
25     inc(i, 1, top - 1) dis[i] = dx[i] - dx[0] + dy[i] - dy[0];
26     inc(i, 0, top - 1) {
27         ll tmp = t - abs(xs - dx[i]) - abs(ys - dy[i]);
28         if (tmp < 0) continue;
29         int tot = 0;
30         if (tmp <= dis[i]) {
31             tot = i - (lower_bound(dis, dis + top, dis[i] - tmp) - dis) + 1;
32         } else {
33             tot = upper_bound(dis + i + 1, dis + top, tmp - dis[i]) - dis;
34         }
35         res = max(res, tot);
36     }
37     cout << res;
38 }
View Code

 

E  Xenon's Attack on the Gangs

最大S的方案必然是0-L都在一条链上,这条链上的数字是“山谷”型

推出状态转移方程 

dp[u][v] = sub[u][v] * sub[v][u] + max(solve(par[v][u], v), solve(par[u][v], u));
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define ll long long
 4 #define inc(i, l, r) for (int i = l; i <= r; i++)
 5 #define pb push_back
 6 
 7 const int maxn = 3e3 + 5;
 8 vector<int> edge[maxn];
 9 int n, u, v;
10 int sub[maxn][maxn], par[maxn][maxn];
11 ll dp[maxn][maxn], res;
12 
13 int root;
14 
15 int dfs(int x, int p) {
16     sub[root][x] = 1;
17     for (int i = 0; i < edge[x].size(); i++) {
18         if (edge[x][i] != p) {
19             par[root][edge[x][i]] = x;
20             sub[root][x] += dfs(edge[x][i], x);
21         }
22     }
23     return sub[root][x];
24 }
25 
26 ll solve(int u, int v) {
27     if (u == v) return 0;
28     if (dp[u][v]) return dp[u][v];
29     return dp[u][v] = sub[u][v] * sub[v][u] +
30                       max(solve(par[v][u], v), solve(par[u][v], u));
31 }
32 
33 int main() {
34     cin >> n;
35     inc(i, 1, n - 1) {
36         cin >> u >> v;
37         edge[u].pb(v);
38         edge[v].pb(u);
39     }
40     inc(i, 1, n) {
41         root = i;
42         dfs(root, -1);
43     }
44     inc(i, 1, n) inc(j, 1, n) {
45         res = max(res, solve(i, j));
46     }
47     printf("%lld\n", res);
48 }
View Code

 

posted @ 2020-01-20 11:13  Linqi05  阅读(181)  评论(0编辑  收藏  举报