【poj 2429】GCD & LCM Inverse (Miller-Rabin素数测试和Pollard_Rho_因数分解)
本题涉及的算法个人无法完全理解,在此提供两个比较好的参考。
原理 (后来又看了一下,其实这篇文章问题还是有的……有时间再搜集一下资料)
#include <algorithm> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> using namespace std; #define ll long long int top; const int S = 10; ll sta[101], Mul[101]; ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } ll mul(ll a, ll b, ll mod) { ll r = 0; while (b) { if (b & 1) { r = r - mod + a; if (r < 0) r += mod; //r = (r + a) % mod; } a = a - mod + a; if (a < 0) a += mod; //a = (a + a) % mod; b >>= 1; } return r; } // 64位数相乘 ll ksm(ll a, ll n, ll mod) { ll r = 1; while (n) { if (n & 1) r = mul(r, a, mod); a = mul(a, a, mod); n >>= 1; } return r; } // 64位数乘方 bool isprime(ll n) { if (n == 2) return true; if (n < 2 || (n & 1) == 0) return false; ll a, x, y, u = n - 1; int t = 0; while ((u & 1) == 0) { t++; u >>= 1; } for (int i = 0; i < S; i++) { a = rand() % (n - 1) + 1; //[1,n-1] x = ksm(a, u, n); for (int j = 0; j < t; j++) { y = mul(x, x, n); if (y == 1 && x != 1 && x != n - 1) return false; x = y; } if (x != 1) return false; } return true; } ll Abs(ll x) { if (x >= 0) return x; return -x; } void rho(ll n) { //注意:不能处理1,否则会运行到对n-1=0取模 if (isprime(n)) { for (int i = 1; i <= top; i++) { if (n == sta[i]) { Mul[i] *= n; return; } } top++; sta[top] = Mul[top] = n; return; } ll x, y, z, c, d; while (true) { x = y = rand() * rand() % (n - 1) + 1; c = rand() * rand() % (n - 1) + 1; // c!=0&&c!=-2 for (int i = 2, j = 2;; i++) { x = mul(x, x, n) - n + c; if (x < 0) x += n; // 64位数相加 d = gcd(Abs(x - y), n); if (d > 1 && d < n) { rho(d); rho(n / d); return; } if (x == y) break; if (i == j) y = x, j <<= 1; } } } int main() { ll a, b; while (scanf("%lld%lld", &a, &b) != EOF) { top = 0; memset(sta, 0, sizeof(sta)); if (b / a == 1) { printf("%lld %lld\n", a, a); continue; } rho(b / a); ll p, q, res = 0, rp, rq; for (int i = 0; i < 1 << top; i++) { p = q = 1; for (int j = 0; j < top; j++) { if (i & (1 << j)) p *= Mul[j + 1]; else q *= Mul[j + 1]; } if (p + q <= res || res == 0) { res = p + q; rp = p; rq = q; } } if (rp > rq) swap(rp, rq); printf("%lld %lld\n", rp * a, rq * a); } }