Max Sum Plus Plus-HDU1024(dp)

Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 

 

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 

 

Output
Output the maximal summation described above in one line.
 

 

Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

 

Sample Output
6 8
 
 

 

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<iostream>

using namespace std;
#define N 1000010
#define INF 0xfffffff
int dp[N];
int M[N];
int Max;
int a[N];

int main()
{
    int m,n;
    while(scanf("%d %d",&m,&n)!=EOF)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            dp[i]=0;
            M[i]=0;
        }
        dp[0]=0;
        M[0]=0;
        for(int i=1;i<=m;i++)
        {
            Max=-INF;
            for(int j=i;j<=n;j++)
            {
                dp[j]=max(dp[j-1]+a[j],M[j-1]+a[j]);
                M[j-1]=Max;
                Max=max(Max,dp[j]);
            }
        }
        printf("%d\n",Max);
    }
    return 0;
}

 

posted @ 2015-12-13 18:09  啦咯  阅读(400)  评论(0编辑  收藏  举报