MAP Estimation

转自维基百科:http://zh.wikipedia.org/wiki/%E6%9C%80%E5%A4%A7%E5%90%8E%E9%AA%8C%E6%A6%82%E7%8E%87

统计学中,最大后验估计英语Maximum a posteriori estimationMAP estimation)是根据经验数据获得对难以观察的量的点估计。它与最大似然估计中的经典方法有密切关系,但是它使用了一个增大的优化目标,这种方法将被估计量的先验分布融合到其中。所以最大后验估计可以看作是规则化(regularization)的最大似然估计。

假设我们需要根据观察数据 x 估计没有观察到的总体参数 θ,让 f 作为 x 的采样分布,这样 f(x | θ) 就是总体参数为 θ 时 x 的概率。函数

\theta \mapsto f(x | \theta) \!

即为似然函数,其估计

\hat{\theta}_{\mathrm{ML}}(x) = \arg\max_{\theta} f(x | \theta) \!

就是 θ 的最大似然估计。

假设 θ 存在一个先验分布 g,这就允许我们将 θ 作为 贝叶斯统计en:Bayesian statistics)中的随机变量,这样 θ 的后验分布就是:

\theta \mapsto \frac{f(x | \theta) \, g(\theta)}{\int_{\Theta} f(x | \theta') \, g(\theta') \, d\theta'} \!

其中 Θ 是 g 的domain,这是贝叶斯定理的直接应用。

最大后验估计方法于是估计 θ 为这个随机变量的后验分布的众数

\hat{\theta}_{\mathrm{MAP}}(x)
= \arg\max_{\theta} \frac{f(x | \theta) \, g(\theta)}
  {\int_{\Theta} f(x | \theta') \, g(\theta') \, d\theta'}
= \arg\max_{\theta} f(x | \theta) \, g(\theta)
\!

后验分布的分母与 θ 无关,所以在优化过程中不起作用。注意当前验 g 是常数函数时最大后验估计与最大似然估计重和。

最大后验估计可以用以下几种方法计算:

  1. 解析方法,当后验分布的模能够用 closed form 方式表示的时候用这种方法。当使用en:conjugate prior 的时候就是这种情况。
  2. 通过如共扼积分法或者牛顿法这样的数值优化方法进行,这通常需要一阶或者导数,导数需要通过解析或者数值方法得到。
  3. 通过 期望最大化算法 的修改实现,这种方法不需要后验密度的导数。

尽管最大后验估计与 Bayesian 统计共享前验分布的使用,通常并不认为它是一种 Bayesian 方法,这是因为最大后验估计是点估计,然而 Bayesian 方法的特点是使用这些分布来总结数据、得到推论。Bayesian 方法试图算出后验均值或者中值以及posterior interval,而不是后验模。尤其是当后验分布没有一个简单的解析形式的时候更是这样:在这种情况下,后验分布可以使用 Markov chain Monte Carlo 技术来模拟,但是找到它的模的优化是很困难或者是不可能的。

参考文献

 
  • M. DeGroot, 最优统计决策, McGraw-Hill, (1970).
posted @ 2011-12-25 17:10  木lin木  阅读(1242)  评论(0编辑  收藏  举报