Spark,ALS、LR、GBDT应用【转载的哦】

【转】https://blog.csdn.net/haozi_rou/article/details/104846914

之前说了很多机器学习,接下来讲下Spark,Spark是为大规模数据处理而设计的快速通用的计算引擎。他有很多的库,例如Spark core、Spark Sql、Spark on Hive、Spark Streaming等。还有机器学习库例如Spark mllib等。

现在有一个场景,有一个list,里面存的是商品实体,现在需要将这些实体中的id提取到另一个list中,现有阶段就是遍历然后把id提取出来,不管是for还是lambda还是别的方式。但是如果这个list里面的数量非常巨大,那么在jvm内存中做这些事情是不现实的,因此,有了Spark core的Map Reduce,可以将复杂的操作封装成RDD的操作,使我们可以很轻易的进行数据转换。

那么它的原理也很简单,假如有十万条数据,那么spark会拆分成若干条,然后分发给对应的机器,map以后再把所有的数据合并,进行计算如max、min、avg等,然后把结果发给目标机器。

那么对于数据库来说,假如分了三个库,每个库里面都有100w条数据,spark有一个spark sql的库,可以根据很简单的语句例如:select sum(price) from shop来去获取三个库的数据并返回结果。

Spark Streaming是指假如有个数据采集的系统,数据是以流式byte[]的形式发送给spark,定义4个为一个数字,那么spark就可以通过流式处理的方案处理数据运算。
 

ALS算法实现

召回算法

加依赖

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_2.12</artifactId>
            <version>2.4.4</version>
            <exclusions>
                <exclusion>
                    <groupId>com.google.guava</groupId>
                    <artifactId>guava</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>14.0.1</version>
        </dependency>

  

public class AlsRecall implements Serializable {
    public static void main(String[] args) throws IOException {
        //初始化spark运行环境
        SparkSession spark = SparkSession.builder()
                .master("local")
                .appName("DianpingApp")
                .getOrCreate();
        JavaRDD<String> csvFile = spark.read().textFile("file:///F:/mouseSpace/project/background/behavior.csv").toJavaRDD();
        JavaRDD<Rating> ratingJavaRDD = csvFile.map(new Function<String, Rating>() {
            @Override
            public Rating call(String s) throws Exception {
                return Rating.parseRating(s);
            }
        });
        Dataset<Row> ratings = spark.createDataFrame(ratingJavaRDD, Rating.class);
        //将所有的rating数据28分,也就是80%数据做训练,20%做测试
        Dataset<Row>[] splits = ratings.randomSplit(new double[]{0.8, 0.2});
 
        Dataset<Row> trainingData = splits[0];
        Dataset<Row> testData = splits[1];
 
        ALS als = new ALS()
                .setMaxIter(10)     //最大迭代次数
                .setRank(5)         //分解出5个特征
                //正则化系数,防止过拟合,也就是训练出来的数据过分趋近于真实数据,一旦真实数据有误差,模型预测结果反而不尽如人意
                //如何防止?增大数据规模,减少特征的维度,增大正则化系数
                //欠拟合:增加维度,减少正则化数
                .setRegParam(0.01)
                .setUserCol("userId")
                .setItemCol("shopId")
                .setRatingCol("rating");
 
        //模型训练
        ALSModel alsModel = als.fit(trainingData);
        alsModel.save("file:///F:/mouseSpace/project/background/als");
    }
 
    public static class Rating implements Serializable{
        private int userId;
        private int shopId;
        private int rating;
 
        private static Rating parseRating(String str){
            str = str.replace("\"" , "");
            String[] strArr = str.split(",");
            int userId = Integer.parseInt(strArr[0]);
            int shopId = Integer.parseInt(strArr[1]);
            int rating = Integer.parseInt(strArr[2]);
            return new Rating(userId , shopId , rating);
        }
        public Rating(int userId, int shopId, int rating) {
            this.userId = userId;
            this.shopId = shopId;
            this.rating = rating;
        }
        public int getUserId() {
            return userId;
        }
        public int getShopId() {
            return shopId;
        }
        public int getRating() {
            return rating;
        }
    }
}

使用spark将数据读取出来,28分,8用于数据训练,2用于测试,再用als进行模型训练,最后生成ALSModel保存起来。接下来加进去模型评测模块:

public class AlsRecall implements Serializable {
    public static void main(String[] args) throws IOException {
        //初始化spark运行环境
        SparkSession spark = SparkSession.builder()
                .master("local")
                .appName("DianpingApp")
                .getOrCreate();
        JavaRDD<String> csvFile = spark.read().textFile("file:///F:/mouseSpace/project/background/behavior.csv").toJavaRDD();
        JavaRDD<Rating> ratingJavaRDD = csvFile.map(new Function<String, Rating>() {
            @Override
            public Rating call(String s) throws Exception {
                return Rating.parseRating(s);
            }
        });
        Dataset<Row> ratings = spark.createDataFrame(ratingJavaRDD, Rating.class);
        //将所有的rating数据28分,也就是80%数据做训练,20%做测试
        Dataset<Row>[] splits = ratings.randomSplit(new double[]{0.8, 0.2});
 
        Dataset<Row> trainingData = splits[0];
        Dataset<Row> testData = splits[1];
 
        ALS als = new ALS()
                .setMaxIter(10)     //最大迭代次数
                .setRank(5)         //分解出5个特征
                //正则化系数,防止过拟合,也就是训练出来的数据过分趋近于真实数据,一旦真实数据有误差,模型预测结果反而不尽如人意
                //如何防止?增大数据规模,减少特征的维度,增大正则化系数
                //欠拟合:增加维度,减少正则化数
                .setRegParam(0.01)
                .setUserCol("userId")
                .setItemCol("shopId")
                .setRatingCol("rating");
 
        //模型训练
        ALSModel alsModel = als.fit(trainingData);
        //模型评测
        Dataset<Row> predictions = alsModel.transform(testData);
        //rmse均方根误差,预测值与真实值的偏差的平方除以观测次数,再开根号
        //所以rmse值越小,也就代表训练数据越准确
        RegressionEvaluator evaluator = new RegressionEvaluator()
                .setMetricName("rmse")
                .setLabelCol("rating")
                .setPredictionCol("prediction");
        double rmse = evaluator.evaluate(predictions);
        System.out.println("rmse = " + rmse);
        alsModel.save("file:///F:/mouseSpace/project/background/als");
    }
 
    public static class Rating implements Serializable{
        private int userId;
        private int shopId;
        private int rating;
 
        private static Rating parseRating(String str){
            str = str.replace("\"" , "");
            String[] strArr = str.split(",");
            int userId = Integer.parseInt(strArr[0]);
            int shopId = Integer.parseInt(strArr[1]);
            int rating = Integer.parseInt(strArr[2]);
            return new Rating(userId , shopId , rating);
        }
        public Rating(int userId, int shopId, int rating) {
            this.userId = userId;
            this.shopId = shopId;
            this.rating = rating;
        }
        public int getUserId() {
            return userId;
        }
        public int getShopId() {
            return shopId;
        }
        public int getRating() {
            return rating;
        }
    }
}

 

 模型评测就是用剩下的2的数据,用推出来的模型进行测试,然后再用真实数据,用rmse算法算出一个值,这个值越小代表模型准确度越高,可以通过调整迭代次数和rank或是正则化系数来调试rmse的分数。

如果报错,可以在main方法中加:

 

 

ALS算法预测

public class AlsRecallPredict {
    public static void main(String[] args) {
        System.setProperty("hadoop.home.dir", "F:\\spark\\hadoop-2.7.1\\hadoop-2.7.1");
        //初始化spark运行环境
        SparkSession spark = SparkSession.builder()
                .master("local")
                .appName("DianpingApp")
                .getOrCreate();
        //加载模型进内存
        ALSModel alsModel = ALSModel.load("F:/mouseSpace/project/background/als/alsmodel/");
 
        JavaRDD<String> csvFile = spark.read().textFile("file:///F:/mouseSpace/project/background/als/behavior.csv").toJavaRDD();
        JavaRDD<Rating> ratingJavaRDD = csvFile.map(new Function<String, Rating>() {
            @Override
            public Rating call(String s) throws Exception {
                return Rating.parseRating(s);
            }
        });
        Dataset<Row> ratings = spark.createDataFrame(ratingJavaRDD, Rating.class);
        //给5个用户做离线的召回结果预测
        Dataset<Row> users = ratings.select(alsModel.getUserCol()).distinct().limit(5);
        Dataset<Row> userRecs = alsModel.recommendForUserSubset(users , 20);
        userRecs.foreachPartition(new ForeachPartitionFunction<Row>() {
            @Override
            public void call(Iterator<Row> iterator) throws Exception {
                //新建数据库连接
                Connection connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/dianpingdb?user=root&password=root&useUnicode=true&characterEncoding=UTF-8&serverTimezone=UTC&nullCatalogMeansCurrent=true");
                PreparedStatement preparedStatement = connection.prepareStatement("insert into recommend(id,recommend) values (?,?)");
                List<Map<String , Object>> data = new ArrayList<>();
                iterator.forEachRemaining(action ->{
                    int userId = action.getInt(0);
                    List<GenericRowWithSchema> recommendationList = action.getList(1);
                    List<Integer> shopList = new ArrayList<>();
                    recommendationList.forEach(row -> {
                        Integer shopId = row.getInt(0);
                        shopList.add(shopId);
                    });
                    String recommendData = StringUtils.join(shopList , ",");
                    Map<String , Object> map = new HashMap<>();
                    map.put("userId" , userId);
                    map.put("recommend" , recommendData);
                    data.add(map);
                });
                data.forEach(stringObjectMap -> {
                    try {
                        preparedStatement.setInt(1 , (Integer) stringObjectMap.get("userId"));
                        preparedStatement.setString(2 , (String) stringObjectMap.get("recommend"));
                        preparedStatement.addBatch();
                    } catch (SQLException e) {
                        e.printStackTrace();
                    }
                });
                preparedStatement.executeBatch();
                connection.close();
            }
        });
    }
    public static class Rating implements Serializable {
        private int userId;
        private int shopId;
        private int rating;
        private static Rating parseRating(String str){
            str = str.replace("\"" , "");
            String[] strArr = str.split(",");
            int userId = Integer.parseInt(strArr[0]);
            int shopId = Integer.parseInt(strArr[1]);
            int rating = Integer.parseInt(strArr[2]);
            return new Rating(userId , shopId , rating);
        }
        public Rating(int userId, int shopId, int rating) {
            this.userId = userId;
            this.shopId = shopId;
            this.rating = rating;
        }
        public int getUserId() {
            return userId;
        }
        public int getShopId() {
            return shopId;
        }
        public int getRating() {
            return rating;
        }
    }
}

整个过程就是说,spark读取用户数据csv文件,ALS读取模型,根据文件随即选出5个用户做预测,并将预测结果存数据库中。

结果数据库中:

 

在真实环境中,我们不可能对每个用户都做预测,我们可以选出例如三个月之内上线过的活跃用户来预测。之所以用jdbc存表,是因为是在分布式环境中。当然,避免数据库读取压力,还可以放一份到redis中。

关于代码中的csv中是什么?

 

每一列分别是:userid,门店id,打分。

LR算法实现

在我们使用ALS召回算法算出门店以后,接下来我们要使用LR算法来进行排序。对于逻辑回归必要的当然是特征,接下来我们来看以下样例:

 

关于LR算法之前介绍过,这里就不详细解释了。中间有很多特征,我们只需要把特征放进模型中,去训练就好,但是不同的价格,不同的年龄的特征对于点击率来说都会有影响,而且模型中也不支持字符串,所以我们需要把特征预处理。那特征的处理可以分为离散特征和连续特征。连续特征例如年龄,1-100岁就是连续特征,价格也属于连续特征。离散特征例如性别。评分也可以是连续特征,也可以是离散特征。那两种特征也有不同处理的方法:

离散特征:one-hot编码 ,就是这个特征是1,其他的都是0

连续特征:z-score标准化(x-mean)/std,例如价格,我们可以算出一个平均数和标准差,用公式就可以把数值压缩在0-1之间

连续特征:max-min标准化 (x-min)/(max-min)

连续特征离散化:bucket编码,例如年龄,虽然1-100岁这样的属于连续特征,但是我们可以分类,比如1-10岁,10-20岁等等,也就有了离散化特征

再看下面文件:
 

 

 

 

A-D是年龄的分类,EF是性别分类,G是评分,用max-min的方式,H-K人均价格使用bucket的方式, L是点击率

接下来上代码:

public class LRTrain {
    public static void main(String[] args) throws IOException {
        //初始化spark运行环境
        SparkSession spark = SparkSession.builder()
                .master("local")
                .appName("DianpingApp")
                .getOrCreate();
        //加载特征及label训练文件
        JavaRDD<String> csvFile = spark.read().textFile("file:///F:/mouseSpace/project/background/lr/feature.csv").toJavaRDD();
        //做转化
        JavaRDD<Row> rowJavaRDD = csvFile.map(new Function<String, Row>() {
            @Override
            public Row call(String s) throws Exception {
                s = s.replace("\"" , "");
                String[] strArr = s.split(",");
                return RowFactory.create(new Double(strArr[11]),
                        Vectors.dense(
                            Double.valueOf(strArr[0]),
                            Double.valueOf(strArr[1]),
                            Double.valueOf(strArr[2]),
                            Double.valueOf(strArr[3]),
                            Double.valueOf(strArr[4]),
                            Double.valueOf(strArr[5]),
                            Double.valueOf(strArr[6]),
                            Double.valueOf(strArr[7]),
                            Double.valueOf(strArr[8]),
                            Double.valueOf(strArr[9]),
                            Double.valueOf(strArr[10])));
            }
        });
        StructType schema = new StructType(
                new StructField[]{
                        new StructField("label" , DataTypes.DoubleType , false , Metadata.empty()),
                        new StructField("features" , new VectorUDT(), false , Metadata.empty())
                }
        );
        Dataset<Row> data = spark.createDataFrame(rowJavaRDD , schema);
        //分开训练和测试
        Dataset<Row>[] splits = data.randomSplit(new double[]{0.8, 0.2});
        Dataset<Row> trainingData = splits[0];
        Dataset<Row> testData = splits[1];
        LogisticRegression lr = new LogisticRegression()
                .setMaxIter(10)
                .setRegParam(0.3)
                .setElasticNetParam(0.8)
                .setFamily("multinomial");  //多分类
        //训练
        LogisticRegressionModel lrModel = lr.fit(trainingData);
        lrModel.save("file:///F:/mouseSpace/project/background/lr/lrmodel");
        //测试评估
        Dataset<Row> predictions = lrModel.transform(testData);
        //评价指标
        MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator();
        double accuracy = evaluator.setMetricName("accuracy").evaluate(predictions);
        System.out.println("auc = " + accuracy);
    }
}

过程跟als很像,就不多说了。

GBDT算法实现

public class GBDTTrain {
    public static void main(String[] args) throws IOException {
        System.setProperty("hadoop.home.dir", "F:\\spark\\hadoop-2.7.1\\hadoop-2.7.1");
        //初始化spark运行环境
        SparkSession spark = SparkSession.builder()
                .master("local")
                .appName("DianpingApp")
                .getOrCreate();
        //加载特征及label训练模型
        JavaRDD<String> csvFile = spark.read().textFile("file:///F:/mouseSpace/project/background/lr/feature.csv").toJavaRDD();
        //特征转化
        JavaRDD<Row> rowJavaRDD = csvFile.map(new Function<String, Row>() {
            @Override
            public Row call(String s) throws Exception {
                s = s.replace("\"" , "");
                String[] strArr = s.split(",");
                return RowFactory.create(new Double(strArr[11]),
                        Vectors.dense(
                                Double.valueOf(strArr[0]),
                                Double.valueOf(strArr[1]),
                                Double.valueOf(strArr[2]),
                                Double.valueOf(strArr[3]),
                                Double.valueOf(strArr[4]),
                                Double.valueOf(strArr[5]),
                                Double.valueOf(strArr[6]),
                                Double.valueOf(strArr[7]),
                                Double.valueOf(strArr[8]),
                                Double.valueOf(strArr[9]),
                                Double.valueOf(strArr[10])));
            }
        });
        StructType schema = new StructType(
                new StructField[]{
                        new StructField("label" , DataTypes.DoubleType , false , Metadata.empty()),
                        new StructField("features" , new VectorUDT(), false , Metadata.empty())
                }
        );
        Dataset<Row> data = spark.createDataFrame(rowJavaRDD , schema);
        //分开训练和测试
        Dataset<Row>[] splits = data.randomSplit(new double[]{0.8, 0.2});
        Dataset<Row> trainingData = splits[0];
        Dataset<Row> testData = splits[1];
 
        GBTClassifier classifier = new GBTClassifier()
                .setLabelCol("label")
                .setFeaturesCol("features")
                .setMaxIter(10);
        GBTClassificationModel gbtClassificationModel = classifier.train(trainingData);
        gbtClassificationModel.save("file:///F:/mouseSpace/project/background/lr/gbdtmodel");
        //测试评估
        Dataset<Row> predictions = gbtClassificationModel.transform(testData);
        //评价指标
        MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator();
        double accuracy = evaluator.setMetricName("accuracy").evaluate(predictions);
        System.out.println("auc = " + accuracy);
    }
}

跟lr算法非常像,spark部分完全一样,只是在加载算法器的时候不一样而已。

 

posted @ 2020-04-15 20:53  消失的白桦林  阅读(664)  评论(0编辑  收藏  举报