Flink batch/stream编程套路
DataSet and DataStream 这里以WordCount为例,共同的编程套路如下所示:
1.获取执行环境(execution environment)
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
2.加载/创建初始数据集
// 读取输入数据
DataStream<String> text;
if (params.has("input")) {
// 读取text文件
text = env.readTextFile(params.get("input"));
} else {
System.out.println("Executing WordCount example with default input data set.");
System.out.println("Use --input to specify file input.");
// 读取默认测试数据集
text = env.fromElements(WordCountData.WORDS);
}
3.对数据集进行各种转换操作(生成新的数据集)
DataStream<Tuple2<String, Integer>> counts =
// 切分每行单词
text.flatMap(new Tokenizer())
//对每个单词分组统计词频数
.keyBy(0).sum(1);
4.指定将计算的结果放到何处去
// 输出统计结果
if (params.has("output")) {
//写入文件地址
counts.writeAsText(params.get("output"));
} else {
System.out.println("Printing result to stdout. Use --output to specify output path.");
//数据打印控制台
counts.print();
}
5.触发APP执行
// 执行flink 程序
env.execute("Streaming WordCount");