Android init进程
概述
init是 Android 启动的第一个用户空间进程,它的地位非常重要,它fork产生系统的一些关键进程(如zygote,surfaceflinger进程),而zygote进一步fork产生system_server和其他应用进程,通过这套逻辑构建了Android的进程层次结构体系。init进程的功能包含但不限于以下:
- 挂载系统分区和加载一些内核模块
- 加载sepolicy 及使能 selinux
- 支持属性服务
- 启动脚本rc文件解析
- 执行事件触发器和属性改变的事件
- 子进程死亡监听,回收僵尸进程
- 非oneshot服务保活
通过ps命令看看init进程信息
# ps -A|grep init
root 1 0 10847128 4020 do_epoll_wait 0 S init # 这个是 init 进程
root 166 1 10817360 1916 do_sys_poll 0 S init # 这个是 subcontext 进程
在启动内核的start_kernel函数流程中,会调用run_init_process函数执行init程序,来启动init进程
run_init_process
在Android中执行的init是/init
/// @kernel_common/init/main.c
static int run_init_process(const char *init_filename)
{
argv_init[0] = init_filename;
pr_info("Run %s as init process\n", init_filename);
return do_execve(getname_kernel(init_filename),
(const char __user *const __user *)argv_init,
(const char __user *const __user *)envp_init);
}
/init 实际上是一个软链接,指向的是/system/bin/init
# ls /init -lZ
lrwxr-x--- 1 root shell u:object_r:init_exec:s0 16 2021-12-20 15:52 /init -> /system/bin/init
接下来,进入init的main函数。
main
main执行分为几个阶段:
- FirstStage 挂载一些基础文件系统和加载内核模块等
- selinux_setup 执行selinux的初始化
- SecondStage 挂载其他文件系统,启动属性服务,执行boot流程等,主要逻辑都在这里实现
/// @system/core/init/main.cpp
int main(int argc, char** argv) {
#if __has_feature(address_sanitizer)
__asan_set_error_report_callback(AsanReportCallback);
#endif
// Boost prio which will be restored later
setpriority(PRIO_PROCESS, 0, -20);
if (!strcmp(basename(argv[0]), "ueventd")) { // 处理uventd启动,共用一个main
return ueventd_main(argc, argv);
}
if (argc > 1) {
if (!strcmp(argv[1], "subcontext")) { // subcontext 子进程入口,用于执行来自init的某些任务
android::base::InitLogging(argv, &android::base::KernelLogger);
const BuiltinFunctionMap& function_map = GetBuiltinFunctionMap();
return SubcontextMain(argc, argv, &function_map);
}
if (!strcmp(argv[1], "selinux_setup")) {// selinux初始化阶段
return SetupSelinux(argv);
}
if (!strcmp(argv[1], "second_stage")) {// 启动第二阶段
return SecondStageMain(argc, argv);
}
}
return FirstStageMain(argc, argv); // 启动第一阶段
}
FirstStageMain
第一阶段初始化
/// @system/core/init/first_stage_init.cpp
int FirstStageMain(int argc, char** argv) {
if (REBOOT_BOOTLOADER_ON_PANIC) {// 设置panic处理器
InstallRebootSignalHandlers();
}
boot_clock::time_point start_time = boot_clock::now();
std::vector<std::pair<std::string, int>> errors;
#define CHECKCALL(x) \
if ((x) != 0) errors.emplace_back(#x " failed", errno);
// Clear the umask.
umask(0);
CHECKCALL(clearenv());
CHECKCALL(setenv("PATH", _PATH_DEFPATH, 1));
// 挂载一些基础文件系统
// Get the basic filesystem setup we need put together in the initramdisk
// on / and then we'll let the rc file figure out the rest.
CHECKCALL(mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"));
CHECKCALL(mkdir("/dev/pts", 0755));
CHECKCALL(mkdir("/dev/socket", 0755));
CHECKCALL(mkdir("/dev/dm-user", 0755));
CHECKCALL(mount("devpts", "/dev/pts", "devpts", 0, NULL));
#define MAKE_STR(x) __STRING(x)
// /proc 伪文件系统,记录进程、线程相关实时状态
CHECKCALL(mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC)));
#undef MAKE_STR
// Don't expose the raw commandline to unprivileged processes.
CHECKCALL(chmod("/proc/cmdline", 0440)); // 只读
std::string cmdline;
android::base::ReadFileToString("/proc/cmdline", &cmdline);
// Don't expose the raw bootconfig to unprivileged processes.
chmod("/proc/bootconfig", 0440);
std::string bootconfig;
android::base::ReadFileToString("/proc/bootconfig", &bootconfig);
gid_t groups[] = {AID_READPROC};
CHECKCALL(setgroups(arraysize(groups), groups));
CHECKCALL(mount("sysfs", "/sys", "sysfs", 0, NULL));
CHECKCALL(mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL));
CHECKCALL(mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11)));
if constexpr (WORLD_WRITABLE_KMSG) {
CHECKCALL(mknod("/dev/kmsg_debug", S_IFCHR | 0622, makedev(1, 11)));
}
CHECKCALL(mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8)));
CHECKCALL(mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9)));
// This is needed for log wrapper, which gets called before ueventd runs.
CHECKCALL(mknod("/dev/ptmx", S_IFCHR | 0666, makedev(5, 2)));
CHECKCALL(mknod("/dev/null", S_IFCHR | 0666, makedev(1, 3)));
// 重要的在第一阶段挂载,其他可以在rc执行流程中挂载
// These below mounts are done in first stage init so that first stage mount can mount
// subdirectories of /mnt/{vendor,product}/. Other mounts, not required by first stage mount,
// should be done in rc files.
// Mount staging areas for devices managed by vold
// See storage config details at http://source.android.com/devices/storage/
CHECKCALL(mount("tmpfs", "/mnt", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
"mode=0755,uid=0,gid=1000"));
// /mnt/vendor is used to mount vendor-specific partitions that can not be
// part of the vendor partition, e.g. because they are mounted read-write.
CHECKCALL(mkdir("/mnt/vendor", 0755));
// /mnt/product is used to mount product-specific partitions that can not be
// part of the product partition, e.g. because they are mounted read-write.
CHECKCALL(mkdir("/mnt/product", 0755));
// /debug_ramdisk is used to preserve additional files from the debug ramdisk
CHECKCALL(mount("tmpfs", "/debug_ramdisk", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
"mode=0755,uid=0,gid=0"));
// /second_stage_resources is used to preserve files from first to second
// stage init
CHECKCALL(mount("tmpfs", kSecondStageRes, "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
"mode=0755,uid=0,gid=0"))
#undef CHECKCALL
SetStdioToDevNull(argv);
// Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually
// talk to the outside world...
InitKernelLogging(argv); // 初始化 kernel logger
if (!errors.empty()) {
for (const auto& [error_string, error_errno] : errors) {
LOG(ERROR) << error_string << " " << strerror(error_errno);
}
LOG(FATAL) << "Init encountered errors starting first stage, aborting";
}
LOG(INFO) << "init first stage started!";
auto old_root_dir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/"), closedir};
if (!old_root_dir) {
PLOG(ERROR) << "Could not opendir(\"/\"), not freeing ramdisk";
}
struct stat old_root_info;
if (stat("/", &old_root_info) != 0) {
PLOG(ERROR) << "Could not stat(\"/\"), not freeing ramdisk";
old_root_dir.reset();
}
auto want_console = ALLOW_FIRST_STAGE_CONSOLE ? FirstStageConsole(cmdline, bootconfig) : 0;
boot_clock::time_point module_start_time = boot_clock::now();
int module_count = 0;
// 加载内核模块
if (!LoadKernelModules(IsRecoveryMode() && !ForceNormalBoot(cmdline, bootconfig), want_console,
module_count)) {
if (want_console != FirstStageConsoleParam::DISABLED) {
LOG(ERROR) << "Failed to load kernel modules, starting console";
} else {
LOG(FATAL) << "Failed to load kernel modules";
}
}
if (module_count > 0) {
auto module_elapse_time = std::chrono::duration_cast<std::chrono::milliseconds>(
boot_clock::now() - module_start_time);
setenv(kEnvInitModuleDurationMs, std::to_string(module_elapse_time.count()).c_str(), 1);
LOG(INFO) << "Loaded " << module_count << " kernel modules took "
<< module_elapse_time.count() << " ms";
}
bool created_devices = false;
if (want_console == FirstStageConsoleParam::CONSOLE_ON_FAILURE) {
if (!IsRecoveryMode()) {
created_devices = DoCreateDevices();
if (!created_devices){
LOG(ERROR) << "Failed to create device nodes early";
}
}
StartConsole(cmdline);
}
// 拷贝prop,Copied ramdisk prop to /second_stage_resources/system/etc/ramdisk/build.prop
if (access(kBootImageRamdiskProp, F_OK) == 0) {
std::string dest = GetRamdiskPropForSecondStage();
std::string dir = android::base::Dirname(dest);
std::error_code ec;
if (!fs::create_directories(dir, ec) && !!ec) {
LOG(FATAL) << "Can't mkdir " << dir << ": " << ec.message();
}
if (!fs::copy_file(kBootImageRamdiskProp, dest, ec)) {
LOG(FATAL) << "Can't copy " << kBootImageRamdiskProp << " to " << dest << ": "
<< ec.message();
}
LOG(INFO) << "Copied ramdisk prop to " << dest;
}
// If "/force_debuggable" is present, the second-stage init will use a userdebug
// sepolicy and load adb_debug.prop to allow adb root, if the device is unlocked.
if (access("/force_debuggable", F_OK) == 0) {
constexpr const char adb_debug_prop_src[] = "/adb_debug.prop";
constexpr const char userdebug_plat_sepolicy_cil_src[] = "/userdebug_plat_sepolicy.cil";
std::error_code ec; // to invoke the overloaded copy_file() that won't throw.
if (access(adb_debug_prop_src, F_OK) == 0 &&
!fs::copy_file(adb_debug_prop_src, kDebugRamdiskProp, ec)) {
LOG(WARNING) << "Can't copy " << adb_debug_prop_src << " to " << kDebugRamdiskProp
<< ": " << ec.message();
}
if (access(userdebug_plat_sepolicy_cil_src, F_OK) == 0 &&
!fs::copy_file(userdebug_plat_sepolicy_cil_src, kDebugRamdiskSEPolicy, ec)) {
LOG(WARNING) << "Can't copy " << userdebug_plat_sepolicy_cil_src << " to "
<< kDebugRamdiskSEPolicy << ": " << ec.message();
}
// setenv for second-stage init to read above kDebugRamdisk* files.
setenv("INIT_FORCE_DEBUGGABLE", "true", 1);
}
if (ForceNormalBoot(cmdline, bootconfig)) {
mkdir("/first_stage_ramdisk", 0755);
// SwitchRoot() must be called with a mount point as the target, so we bind mount the
// target directory to itself here.
if (mount("/first_stage_ramdisk", "/first_stage_ramdisk", nullptr, MS_BIND, nullptr) != 0) {
LOG(FATAL) << "Could not bind mount /first_stage_ramdisk to itself";
}
SwitchRoot("/first_stage_ramdisk");
}
// Mounts partitions specified by fstab in device tree.
// 通过fstab的配置挂载,在Android中通常在 /system/etc/fstab.xxx ,/vendor/etc/fstab.xxx 等地方
if (!DoFirstStageMount(!created_devices)) {// 挂载一些必要分区,如/system
LOG(FATAL) << "Failed to mount required partitions early ...";
}
struct stat new_root_info;
if (stat("/", &new_root_info) != 0) {
PLOG(ERROR) << "Could not stat(\"/\"), not freeing ramdisk";
old_root_dir.reset();
}
if (old_root_dir && old_root_info.st_dev != new_root_info.st_dev) {
FreeRamdisk(old_root_dir.get(), old_root_info.st_dev);
}
SetInitAvbVersionInRecovery();
setenv(kEnvFirstStageStartedAt, std::to_string(start_time.time_since_epoch().count()).c_str(),
1);
/// 再次执行init,此处传入了 selinux_setup 参数,会进入 selinux初始化阶段
/// 从init main 方法可知,此过程调用 SetupSelinux
const char* path = "/system/bin/init";
const char* args[] = {path, "selinux_setup", nullptr};
auto fd = open("/dev/kmsg", O_WRONLY | O_CLOEXEC);
dup2(fd, STDOUT_FILENO);
dup2(fd, STDERR_FILENO);
close(fd);
execv(path, const_cast<char**>(args));
// execv() only returns if an error happened, in which case we
// panic and never fall through this conditional.
PLOG(FATAL) << "execv(\"" << path << "\") failed";
return 1;
}
InstallRebootSignalHandlers
init信号处理器,调试版本当init crash,默认重启到 bootLoader
void InstallRebootSignalHandlers() {
// Instead of panic'ing the kernel as is the default behavior when init crashes,
// we prefer to reboot to bootloader on development builds, as this will prevent
// boot looping bad configurations and allow both developers and test farms to easily
// recover.
struct sigaction action;
memset(&action, 0, sizeof(action));
sigfillset(&action.sa_mask);
action.sa_handler = [](int signal) {
// These signal handlers are also caught for processes forked from init, however we do not
// want them to trigger reboot, so we directly call _exit() for children processes here.
if (getpid() != 1) { // 非init直接退出
_exit(signal);
}
// Calling DoReboot() or LOG(FATAL) is not a good option as this is a signal handler.
// RebootSystem uses syscall() which isn't actually async-signal-safe, but our only option
// and probably good enough given this is already an error case and only enabled for
// development builds.
InitFatalReboot(signal); // 执行重启操作
};
action.sa_flags = SA_RESTART;
// 设置信号处理器
sigaction(SIGABRT, &action, nullptr);
sigaction(SIGBUS, &action, nullptr);
sigaction(SIGFPE, &action, nullptr);
sigaction(SIGILL, &action, nullptr);
sigaction(SIGSEGV, &action, nullptr);
#if defined(SIGSTKFLT)
sigaction(SIGSTKFLT, &action, nullptr);
#endif
sigaction(SIGSYS, &action, nullptr);
sigaction(SIGTRAP, &action, nullptr);
}
InitFatalReboot
默认执行重启的 init_fatal_reboot_target 的值是 bootloader
/// @system/core/init/reboot_utils.cpp
static std::string init_fatal_reboot_target = "bootloader";
void __attribute__((noreturn)) InitFatalReboot(int signal_number) {
auto pid = fork();
if (pid == -1) {
// Couldn't fork, don't even try to backtrace, just reboot.
RebootSystem(ANDROID_RB_RESTART2, init_fatal_reboot_target);
} else if (pid == 0) { // 子进程确保能重启
// Fork a child for safety, since we always want to shut down if something goes wrong, but
// its worth trying to get the backtrace, even in the signal handler, since typically it
// does work despite not being async-signal-safe.
sleep(5);
RebootSystem(ANDROID_RB_RESTART2, init_fatal_reboot_target);
}
// 先尝试获取 backtrace ,然后执行重启,
// In the parent, let's try to get a backtrace then shutdown.
LOG(ERROR) << __FUNCTION__ << ": signal " << signal_number;
std::unique_ptr<Backtrace> backtrace(
Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
if (!backtrace->Unwind(0)) {
LOG(ERROR) << __FUNCTION__ << ": Failed to unwind callstack.";
}
for (size_t i = 0; i < backtrace->NumFrames(); i++) {
LOG(ERROR) << backtrace->FormatFrameData(i);
}
// 在SetFatalRebootTarget函数读取是否触发panic和重启目标 默认bootloader
if (init_fatal_panic) { // 若init退出触发panic
LOG(ERROR) << __FUNCTION__ << ": Trigger crash";
android::base::WriteStringToFile("c", PROC_SYSRQ); // 通过/proc/sysrq-trigger 触发死机
LOG(ERROR) << __FUNCTION__ << ": Sys-Rq failed to crash the system; fallback to exit().";
_exit(signal_number);
}
RebootSystem(ANDROID_RB_RESTART2, init_fatal_reboot_target);
}
DoFirstStageMount
这里探究一下,在这个first stage挂载了那些分区
/// @system/core/init/first_stage_mount.cpp
// Mounts partitions specified by fstab in device tree.
bool DoFirstStageMount(bool create_devices) {
// Skips first stage mount if we're in recovery mode.
if (IsRecoveryMode()) {
LOG(INFO) << "First stage mount skipped (recovery mode)";
return true;
}
// 创建 FirstStageMount,在此函数里读取fstab
auto fsm = FirstStageMount::Create();
if (!fsm.ok()) {
LOG(ERROR) << "Failed to create FirstStageMount " << fsm.error();
return false;
}
if (create_devices) {
if (!(*fsm)->DoCreateDevices()) return false;
}
return (*fsm)->DoFirstStageMount(); // 执行mount
}
FirstStageMount::DoFirstStageMount
/// @system/core/init/first_stage_mount.cpp
bool FirstStageMount::DoFirstStageMount() {
// 判断 fstab和逻辑分区存在
if (!IsDmLinearEnabled() && fstab_.empty()) {
// Nothing to mount.
LOG(INFO) << "First stage mount skipped (missing/incompatible/empty fstab in device tree)";
return true;
}
// 执行挂载fstab中的分区
if (!MountPartitions()) return false;
return true;
}
FirstStageMount::MountPartitions
bool FirstStageMount::MountPartitions() {
// 挂载 /system
if (!TrySwitchSystemAsRoot()) return false;
// 移除不需要挂载的分区
if (!SkipMountingPartitions(&fstab_, true /* verbose */)) return false;
// 循环挂载fstab中的分区
for (auto current = fstab_.begin(); current != fstab_.end();) {
// We've already mounted /system above.
if (current->mount_point == "/system") {
++current;
continue;
}
// Handle overlayfs entries later.
if (current->fs_type == "overlay") { // 延时 overlay
++current;
continue;
}
// Skip raw partition entries such as boot, dtbo, etc.
// Having emmc fstab entries allows us to probe current->vbmeta_partition
// in InitDevices() when they are AVB chained partitions.
if (current->fs_type == "emmc") {
++current;
continue;
}
Fstab::iterator end;
if (!MountPartition(current, false /* erase_same_mounts */, &end)) { // 挂载指定分区
if (current->fs_mgr_flags.no_fail) {
LOG(INFO) << "Failed to mount " << current->mount_point
<< ", ignoring mount for no_fail partition";
} else if (current->fs_mgr_flags.formattable) {
LOG(INFO) << "Failed to mount " << current->mount_point
<< ", ignoring mount for formattable partition";
} else {
PLOG(ERROR) << "Failed to mount " << current->mount_point;
return false;
}
}
current = end;
}
for (const auto& entry : fstab_) {
if (entry.fs_type == "overlay") { // 处理 overlay
fs_mgr_mount_overlayfs_fstab_entry(entry);
}
}
... // overlayfs, ScratchPartition
return true;
}
从上面分析可知,挂载的信息存储在fstab_ 里面,它是在FirstStageMount::Create函数中读取的
Result<std::unique_ptr<FirstStageMount>> FirstStageMount::Create() {
auto fstab = ReadFirstStageFstab(); // 此处读取 fstab
if (!fstab.ok()) {
return fstab.error();
}
if (IsDtVbmetaCompatible(*fstab)) { // 根据 compatible 创建不同对象
return std::make_unique<FirstStageMountVBootV2>(std::move(*fstab));
} else {
return std::make_unique<FirstStageMountVBootV1>(std::move(*fstab));
}
}
ReadFirstStageFstab
/// @system/core/init/first_stage_mount.cpp
static Result<Fstab> ReadFirstStageFstab() {
Fstab fstab;
if (!ReadFstabFromDt(&fstab)) { // 首先读取device tree, 默认值 /proc/device-tree/firmware/android/fstab
if (ReadDefaultFstab(&fstab)) { // 没有读到,再读默认Fstab
fstab.erase(std::remove_if(fstab.begin(), fstab.end(),
[](const auto& entry) {
return !entry.fs_mgr_flags.first_stage_mount;
}),
fstab.end());
} else {
return Error() << "failed to read default fstab for first stage mount";
}
}
return fstab;
}
ReadFstabFromDt
/// @system/core/fs_mgr/fs_mgr_fstab.cpp
std::string ReadFstabFromDt() {
if (!is_dt_compatible() || !IsDtFstabCompatible()) {
return {};
}
// 默认值 /proc/device-tree/firmware/android/fstab
std::string fstabdir_name = get_android_dt_dir() + "/fstab";
std::unique_ptr<DIR, int (*)(DIR*)> fstabdir(opendir(fstabdir_name.c_str()), closedir);
if (!fstabdir) return {};
dirent* dp;
// Each element in fstab_dt_entries is <mount point, the line format in fstab file>.
std::vector<std::pair<std::string, std::string>> fstab_dt_entries;
while ((dp = readdir(fstabdir.get())) != NULL) { // 读取 fstab 信息
// skip over name, compatible and .
if (dp->d_type != DT_DIR || dp->d_name[0] == '.') continue;
// create <dev> <mnt_point> <type> <mnt_flags> <fsmgr_flags>\n
...
}
}
ReadDefaultFstab
/// @system/core/fs_mgr/fs_mgr_fstab.cpp
// Loads the fstab file and combines with fstab entries passed in from device tree.
bool ReadDefaultFstab(Fstab* fstab) {
fstab->clear();
ReadFstabFromDt(fstab, false /* verbose */); // 重新从 device tree 读取一次 ??
std::string default_fstab_path;
// Use different fstab paths for normal boot and recovery boot, respectively
if (access("/system/bin/recovery", F_OK) == 0) { // recovery模式
default_fstab_path = "/etc/recovery.fstab";
} else { // normal boot
default_fstab_path = GetFstabPath(); // 获取 fstab 文件路径
}
Fstab default_fstab;
// 从 fstab 文件读取 fstab信息
if (!default_fstab_path.empty() && ReadFstabFromFile(default_fstab_path, &default_fstab)) {
for (auto&& entry : default_fstab) {
fstab->emplace_back(std::move(entry));
}
} else {
LINFO << __FUNCTION__ << "(): failed to find device default fstab";
}
return !fstab->empty();
}
看看GetFstabPath实现,决定从哪读取fstab
// Return the path to the fstab file. There may be multiple fstab files; the
// one that is returned will be the first that exists of fstab.<fstab_suffix>,
// fstab.<hardware>, and fstab.<hardware.platform>. The fstab is searched for
// in /odm/etc/ and /vendor/etc/, as well as in the locations where it may be in
// the first stage ramdisk during early boot. Previously, the first stage
// ramdisk's copy of the fstab had to be located in the root directory, but now
// the system/etc directory is supported too and is the preferred location.
std::string GetFstabPath() {
for (const char* prop : {"fstab_suffix", "hardware", "hardware.platform"}) {
std::string suffix;
// 从 ro.boot.(prop值)或 kernel cmdline 等处读取文件名后缀,
// 从我的模拟器测试获取 ro.boot.hardware 为 ranchu
if (!fs_mgr_get_boot_config(prop, &suffix)) continue;
// 遍历访问 prefix + suffix 路径的文件是否存在, 比如 /vendor/etc/fstab.ranchu
for (const char* prefix : {// late-boot/post-boot locations
"/odm/etc/fstab.", "/vendor/etc/fstab.",
// early boot locations
"/system/etc/fstab.", "/first_stage_ramdisk/system/etc/fstab.",
"/fstab.", "/first_stage_ramdisk/fstab."}) {
std::string fstab_path = prefix + suffix;
if (access(fstab_path.c_str(), F_OK) == 0) {
return fstab_path;
}
}
}
return "";
}
查看 /vendor/etc/fstab.ranchu , 看其中相关分区信息, 比如 /system、/data
$ cat /vendor/etc/fstab.ranchu
# Android fstab file.
#<dev> <mnt_point> <type> <mnt_flags options> <fs_mgr_flags>
system /system ext4 ro,barrier=1 wait,logical,avb=vbmeta,first_stage_mount
vendor /vendor ext4 ro,barrier=1 wait,logical,first_stage_mount
product /product ext4 ro,barrier=1 wait,logical,first_stage_mount
system_ext /system_ext ext4 ro,barrier=1 wait,logical,first_stage_mount
/dev/block/vdc /data ext4 noatime,nosuid,nodev,nomblk_io_submit,errors=panic wait,check,quota,fileencryption=aes-256-xts:aes-256-cts,reservedsize=128M,fsverity,keydirectory=/metadata/vold/metadata_encryption,latemount
/dev/block/pci/pci0000:00/0000:00:06.0/by-name/metadata /metadata ext4 noatime,nosuid,nodev wait,formattable,first_stage_mount
/devices/\*\/block/vdf auto auto defaults voldmanaged=sdcard:auto,encryptable=userdata
dev/block/zram0 none swap defaults zramsize=75%
SetupSelinux
初始化 selinux 阶段
/// @system/core/init/selinux.cpp
// The SELinux setup process is carefully orchestrated around snapuserd. Policy
// must be loaded off dynamic partitions, and during an OTA, those partitions
// cannot be read without snapuserd. But, with kernel-privileged snapuserd
// running, loading the policy will immediately trigger audits.
//
// We use a five-step process to address this:
// (1) Read the policy into a string, with snapuserd running.
// (2) Rewrite the snapshot device-mapper tables, to generate new dm-user
// devices and to flush I/O.
// (3) Kill snapuserd, which no longer has any dm-user devices to attach to.
// (4) Load the sepolicy and issue critical restorecons in /dev, carefully
// avoiding anything that would read from /system.
// (5) Re-launch snapuserd and attach it to the dm-user devices from step (2).
//
// After this sequence, it is safe to enable enforcing mode and continue booting.
int SetupSelinux(char** argv) {
SetStdioToDevNull(argv);
InitKernelLogging(argv);
if (REBOOT_BOOTLOADER_ON_PANIC) { // panic 重启到 BootLoader
InstallRebootSignalHandlers();
}
boot_clock::time_point start_time = boot_clock::now();
MountMissingSystemPartitions();
SelinuxSetupKernelLogging();
LOG(INFO) << "Opening SELinux policy";
// Read the policy before potentially killing snapuserd.
std::string policy;
// 首先获取 precompiled policy文件,没有则执行/system/bin/secilc将policy编译到一个文件,
// 然后从上面获取的文件读取策略文件
ReadPolicy(&policy);
auto snapuserd_helper = SnapuserdSelinuxHelper::CreateIfNeeded();
if (snapuserd_helper) { // kill snapused
// Kill the old snapused to avoid audit messages. After this we cannot
// read from /system (or other dynamic partitions) until we call
// FinishTransition().
snapuserd_helper->StartTransition();
}
LoadSelinuxPolicy(policy); // 加载 selinux policy
if (snapuserd_helper) { // resume snapused
// Before enforcing, finish the pending snapuserd transition.
snapuserd_helper->FinishTransition();
snapuserd_helper = nullptr;
}
SelinuxSetEnforcement(); // 设置 selinux policy 启动状态, 写 /sys/fs/selinux/enforce
// We're in the kernel domain and want to transition to the init domain. File systems that
// store SELabels in their xattrs, such as ext4 do not need an explicit restorecon here,
// but other file systems do. In particular, this is needed for ramdisks such as the
// recovery image for A/B devices.
if (selinux_android_restorecon("/system/bin/init", 0) == -1) {
PLOG(FATAL) << "restorecon failed of /system/bin/init failed";
}
setenv(kEnvSelinuxStartedAt, std::to_string(start_time.time_since_epoch().count()).c_str(), 1);
/// 再次执行init,此处传入了 second_stage 参数,会进入 启动第二阶段
/// 从init main 方法可知,此过程调用 SecondStageMain
const char* path = "/system/bin/init";
const char* args[] = {path, "second_stage", nullptr};
execv(path, const_cast<char**>(args));
// execv() only returns if an error happened, in which case we
// panic and never return from this function.
PLOG(FATAL) << "execv(\"" << path << "\") failed";
return 1;
}
SecondStageMain
第二阶段执行
/// system/core/init/init.cpp
int SecondStageMain(int argc, char** argv) {
if (REBOOT_BOOTLOADER_ON_PANIC) {
InstallRebootSignalHandlers();// 设置Signal处理器
}
boot_clock::time_point start_time = boot_clock::now();
// shutdown 处理函数
trigger_shutdown = [](const std::string& command) { shutdown_state.TriggerShutdown(command); };
SetStdioToDevNull(argv);
InitKernelLogging(argv);
LOG(INFO) << "init second stage started!";
// Update $PATH in the case the second stage init is newer than first stage init, where it is
// first set.
if (setenv("PATH", _PATH_DEFPATH, 1) != 0) {
PLOG(FATAL) << "Could not set $PATH to '" << _PATH_DEFPATH << "' in second stage";
}
// Init should not crash because of a dependence on any other process, therefore we ignore
// SIGPIPE and handle EPIPE at the call site directly. Note that setting a signal to SIG_IGN
// is inherited across exec, but custom signal handlers are not. Since we do not want to
// ignore SIGPIPE for child processes, we set a no-op function for the signal handler instead.
{
struct sigaction action = {.sa_flags = SA_RESTART};
action.sa_handler = [](int) {};
sigaction(SIGPIPE, &action, nullptr); // 对 SIGPIPE 进行拦截处理
}
// Set init and its forked children's oom_adj.
if (auto result =
WriteFile("/proc/1/oom_score_adj", StringPrintf("%d", DEFAULT_OOM_SCORE_ADJUST));
!result.ok()) { // 设置 oom_score_adj , DEFAULT_OOM_SCORE_ADJUST = -1000
LOG(ERROR) << "Unable to write " << DEFAULT_OOM_SCORE_ADJUST
<< " to /proc/1/oom_score_adj: " << result.error();
}
// Set up a session keyring that all processes will have access to. It
// will hold things like FBE encryption keys. No process should override
// its session keyring.
keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1);
// Indicate that booting is in progress to background fw loaders, etc.
close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
// See if need to load debug props to allow adb root, when the device is unlocked.
const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE");
bool load_debug_prop = false;
if (force_debuggable_env && AvbHandle::IsDeviceUnlocked()) {// 是否加载 debug props
load_debug_prop = "true"s == force_debuggable_env;
}
unsetenv("INIT_FORCE_DEBUGGABLE");
// Umount the debug ramdisk so property service doesn't read .prop files from there, when it
// is not meant to.
if (!load_debug_prop) {
UmountDebugRamdisk();
}
PropertyInit(); // 属性环境相关初始化,及固有属性加载
// Umount second stage resources after property service has read the .prop files.
UmountSecondStageRes(); // umount /second_stage_resources
// Umount the debug ramdisk after property service has read the .prop files when it means to.
if (load_debug_prop) {
UmountDebugRamdisk();
}
// Mount extra filesystems required during second stage init
MountExtraFilesystems(); // mount 其他文件系统,如 /apex ,/linkerconfig
// Now set up SELinux for second stage.
SelinuxSetupKernelLogging();
SelabelInitialize();
SelinuxRestoreContext();
Epoll epoll;
if (auto result = epoll.Open(); !result.ok()) { // 创建 Epoll
PLOG(FATAL) << result.error();
}
InstallSignalFdHandler(&epoll); // 将 signalFd 添加到 epoll 监听
InstallInitNotifier(&epoll); // 将wake_main_thread_fd添加到 epoll 监听,用于唤醒main线程
StartPropertyService(&property_fd); // 启动属性服务
// Make the time that init stages started available for bootstat to log.
RecordStageBoottimes(start_time);
// Set libavb version for Framework-only OTA match in Treble build.
if (const char* avb_version = getenv("INIT_AVB_VERSION"); avb_version != nullptr) {
SetProperty("ro.boot.avb_version", avb_version);
}
unsetenv("INIT_AVB_VERSION");
fs_mgr_vendor_overlay_mount_all();
export_oem_lock_status();
MountHandler mount_handler(&epoll);
SetUsbController();
SetKernelVersion();
// 内置函数映射, 比如 {"trigger", {1, 1, {false, do_trigger}}}
// rc 的 trigger 对应 do_trigger
const BuiltinFunctionMap& function_map = GetBuiltinFunctionMap();
Action::set_function_map(&function_map);
if (!SetupMountNamespaces()) {
PLOG(FATAL) << "SetupMountNamespaces failed";
}
InitializeSubcontext();
// 创建 action管理者,用于管理相关事件对应的动作,对应的是rc中 on xxx 以及 Builtin Action
ActionManager& am = ActionManager::GetInstance();
// 创建服务列表,管理rc中的 service
ServiceList& sm = ServiceList::GetInstance();
LoadBootScripts(am, sm); // 解析 init相关rc文件
// Turning this on and letting the INFO logging be discarded adds 0.2s to
// Nexus 9 boot time, so it's disabled by default.
if (false) DumpState();
// Make the GSI status available before scripts start running.
auto is_running = android::gsi::IsGsiRunning() ? "1" : "0";
SetProperty(gsi::kGsiBootedProp, is_running);
auto is_installed = android::gsi::IsGsiInstalled() ? "1" : "0";
SetProperty(gsi::kGsiInstalledProp, is_installed);
am.QueueBuiltinAction(SetupCgroupsAction, "SetupCgroups");
am.QueueBuiltinAction(SetKptrRestrictAction, "SetKptrRestrict");
am.QueueBuiltinAction(TestPerfEventSelinuxAction, "TestPerfEventSelinux");
am.QueueEventTrigger("early-init");
// Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
// ... so that we can start queuing up actions that require stuff from /dev.
am.QueueBuiltinAction(SetMmapRndBitsAction, "SetMmapRndBits");
Keychords keychords;
am.QueueBuiltinAction(
[&epoll, &keychords](const BuiltinArguments& args) -> Result<void> {
for (const auto& svc : ServiceList::GetInstance()) {
keychords.Register(svc->keycodes());
}
keychords.Start(&epoll, HandleKeychord);
return {};
},
"KeychordInit");
// Trigger all the boot actions to get us started.
am.QueueEventTrigger("init");
// Don't mount filesystems or start core system services in charger mode.
std::string bootmode = GetProperty("ro.bootmode", "");
if (bootmode == "charger") {
am.QueueEventTrigger("charger");
} else {
am.QueueEventTrigger("late-init");
}
// Run all property triggers based on current state of the properties.
am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");
// Restore prio before main loop
setpriority(PRIO_PROCESS, 0, 0);
while (true) { // 主循环,后面介绍
...
auto pending_functions = epoll.Wait(epoll_timeout); // 等待到新消息到来或超时
...
}
return 0;
}
接下来看一些主要流程
PropertyInit
void PropertyInit() {
selinux_callback cb;
cb.func_audit = PropertyAuditCallback;
selinux_set_callback(SELINUX_CB_AUDIT, cb);
mkdir("/dev/__properties__", S_IRWXU | S_IXGRP | S_IXOTH);
CreateSerializedPropertyInfo(); // 创建property se contexts
if (__system_property_area_init()) { // 将 /dev/__properties__/properties_serial 映射到内存, 创建 ContextNodes,对每个node打开映射
LOG(FATAL) << "Failed to initialize property area";
}
if (!property_info_area.LoadDefaultPath()) { // 加载/dev/__properties__/property_info 映射进内存
LOG(FATAL) << "Failed to load serialized property info file";
}
// If arguments are passed both on the command line and in DT,
// properties set in DT always have priority over the command-line ones.
ProcessKernelDt(); // 解析 /proc/device-tree/firmware/android/
ProcessKernelCmdline(); // 解析 /proc/cmdline , 将其中键值对满足key为androidboot.* 的,将key替换为ro.boot.*,然后添加到属性
ProcessBootconfig(); // 解析 /proc/bootconfig ,同上
// Propagate the kernel variables to internal variables
// used by init as well as the current required properties.
ExportKernelBootProps(); // 给一些kernel属性初始赋值,如果没有设置的话
// 加载默认的属性文件的属性
// 如 /system/build.prop /vendor/default.prop /vendor/build.prop
// 还会解析其他分区 如 odm、product、system_ext
PropertyLoadBootDefaults();
}
StartPropertyService
启动系统服务,建立与init之间通信socket,以及设置属性监听
/// @system/core/init/property_service.cpp
void StartPropertyService(int* epoll_socket) {
InitPropertySet("ro.property_service.version", "2");
int sockets[2];
// 创建 socket 对,用于init和属性服务间通信
if (socketpair(AF_UNIX, SOCK_SEQPACKET | SOCK_CLOEXEC, 0, sockets) != 0) {
PLOG(FATAL) << "Failed to socketpair() between property_service and init";
}
*epoll_socket = from_init_socket = sockets[0]; // 回传给init端
init_socket = sockets[1]; // 持有此fd端
StartSendingMessages(); // 设置 accept_messages = true , 表示可以处理请求消息
// 创建接收属性请求的 socket
if (auto result = CreateSocket(PROP_SERVICE_NAME, SOCK_STREAM | SOCK_CLOEXEC | SOCK_NONBLOCK,
false, 0666, 0, 0, {});
result.ok()) {
property_set_fd = *result; // 记录此fd
} else {
LOG(FATAL) << "start_property_service socket creation failed: " << result.error();
}
listen(property_set_fd, 8); // 监听
auto new_thread = std::thread{PropertyServiceThread}; // 创建新线程,调用PropertyServiceThread用于处理请求,
property_service_thread.swap(new_thread);
}
LoadBootScripts
加载并解析 init rc 脚本
static void LoadBootScripts(ActionManager& action_manager, ServiceList& service_list) {
Parser parser = CreateParser(action_manager, service_list);
std::string bootscript = GetProperty("ro.boot.init_rc", "");
if (bootscript.empty()) {
parser.ParseConfig("/system/etc/init/hw/init.rc"); // 首先解析 init.rc
if (!parser.ParseConfig("/system/etc/init")) { // 解析 /system/etc/init 目录
late_import_paths.emplace_back("/system/etc/init"); // 解析失败延时解析
}
// late_import is available only in Q and earlier release. As we don't
// have system_ext in those versions, skip late_import for system_ext.
parser.ParseConfig("/system_ext/etc/init"); // 解析 /system_ext/etc/init 目录
if (!parser.ParseConfig("/vendor/etc/init")) { // 解析 /vendor/etc/init 目录
late_import_paths.emplace_back("/vendor/etc/init");
}
if (!parser.ParseConfig("/odm/etc/init")) { // 解析 /odm/etc/init 目录
late_import_paths.emplace_back("/odm/etc/init");
}
if (!parser.ParseConfig("/product/etc/init")) { // 解析 /product/etc/init 目录
late_import_paths.emplace_back("/product/etc/init");
}
} else {
parser.ParseConfig(bootscript);
}
}
添加内置动作和事件触发器
-
内置动作(Builtin Action)
只在代码里面调用QueueBuiltinAction的action,其他action在rc里使用 on 声明。action通常需要一些事件来触发 -
事件触发器(Trigger)
调用QueueEventTrigger插入事件触发器
// 添加相关action,会同时添加到 事件队列 和 action队列
am.QueueBuiltinAction(SetupCgroupsAction, "SetupCgroups");
am.QueueBuiltinAction(SetKptrRestrictAction, "SetKptrRestrict");
am.QueueBuiltinAction(TestPerfEventSelinuxAction, "TestPerfEventSelinux");
am.QueueEventTrigger("early-init"); // 触发 early-init
// Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
// ... so that we can start queuing up actions that require stuff from /dev.
am.QueueBuiltinAction(SetMmapRndBitsAction, "SetMmapRndBits");
Keychords keychords;
am.QueueBuiltinAction(...,"KeychordInit");
// Trigger all the boot actions to get us started.
am.QueueEventTrigger("init"); // 触发 init
// Don't mount filesystems or start core system services in charger mode.
std::string bootmode = GetProperty("ro.bootmode", "");
if (bootmode == "charger") { // 充电模式
am.QueueEventTrigger("charger");
} else { // 正常模式, 触发 late-init
am.QueueEventTrigger("late-init");
}
// Run all property triggers based on current state of the properties.
// 添加属性触发器。在queue_property_triggers_action中添加的trigger执行之后开始处理属性变化事件, 同时将已匹配的属性事件触发
am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");
以上操作实际上只是向事件队列和action集合添加,而没有真正的去执行,真正触发执行是在主循环中,通过调用 ActionManager#ExecuteOneCommand。
SecondStageMain 循环处理事件
如下是 init 主循环,负责处理相关事件。
int SecondStageMain(int argc, char** argv) {
...
// Restore prio before main loop
setpriority(PRIO_PROCESS, 0, 0);
while (true) {
// By default, sleep until something happens. 计算epool超时
auto epoll_timeout = std::optional<std::chrono::milliseconds>{};
auto shutdown_command = shutdown_state.CheckShutdown();
if (shutdown_command) { // 处理关机请求
LOG(INFO) << "Got shutdown_command '" << *shutdown_command
<< "' Calling HandlePowerctlMessage()";
HandlePowerctlMessage(*shutdown_command);
shutdown_state.set_do_shutdown(false);
}
// 当没有要等待的属性或执行的服务 则从事件队列中取出一个执行其对应的 action,可能对应多个action
if (!(prop_waiter_state.MightBeWaiting() || Service::is_exec_service_running())) {
am.ExecuteOneCommand();
}
if (!IsShuttingDown()) { // 不是正在关机, 如有需要重启的服务,需要据此重新计算超时时间
auto next_process_action_time = HandleProcessActions();
// If there's a process that needs restarting, wake up in time for that.
if (next_process_action_time) {
epoll_timeout = std::chrono::ceil<std::chrono::milliseconds>(
*next_process_action_time - boot_clock::now());
if (*epoll_timeout < 0ms) epoll_timeout = 0ms;
}
}
if (!(prop_waiter_state.MightBeWaiting() || Service::is_exec_service_running())) {
// If there's more work to do, wake up again immediately.
if (am.HasMoreCommands()) epoll_timeout = 0ms; // 还有事件需要处理,超时为0,即里面处理下个事件
}
auto pending_functions = epoll.Wait(epoll_timeout); // 等待到新消息到来或超时
if (!pending_functions.ok()) {
LOG(ERROR) << pending_functions.error();
} else if (!pending_functions->empty()) { // 有待执行命令,比如唤醒要执行的回调 clear_eventfd
// We always reap children before responding to the other pending functions. This is to
// prevent a race where other daemons see that a service has exited and ask init to
// start it again via ctl.start before init has reaped it.
ReapAnyOutstandingChildren(); // 首先回收已退出的进程,回收僵尸进程
for (const auto& function : *pending_functions) { // 执行相关回调
(*function)();
}
}
if (!IsShuttingDown()) { // 不是正在关机,
HandleControlMessages(); // 处理 ctl 属性消息
SetUsbController();
}
}
return 0;
}
内置action和触发器执行
当初次进入会直接调用 ActionManager::ExecuteOneCommand,去执行之前的事件,因此会依次执行
-
触发SetKptrRestrict, 调用 SetupCgroupsAction
-
触发SetKptrRestrict, 调用 SetKptrRestrictAction
-
触发 early-init
- 启动 ueventd
-
触发wait_for_coldboot_done,调用 wait_for_coldboot_done_action
- 等待ro.cold_boot_done=true,即ueventd执行完
-
触发SetMmapRndBits,调用 SetMmapRndBitsAction
-
触发KeychordInit
-
触发init
- 启动logd、servicemanager、hwservicemanager、vndservicemanager
-
触发late-init / charger(充电模式下),下面都是在 late-init 情况下触发
-
trigger early-fs
-
trigger fs
-
trigger post-fs
-
trigger late-fs
-
trigger post-fs-data
-
trigger load_bpf_programs
-
trigger zygote-start # 触发启动zygote 框架
-
trigger firmware_mounts_complete
-
trigger early-boot
-
trigger boot
-
-
触发queue_property_triggers, 调用queue_property_triggers_action
late-init
# Mount filesystems and start core system services.
on late-init
trigger early-fs // 启动 vold
# Mount fstab in init.{$device}.rc by mount_all command. Optional parameter
# '--early' can be specified to skip entries with 'latemount'.
# /system and /vendor must be mounted by the end of the fs stage,
# while /data is optional.
trigger fs // 如 mount_all /vendor/etc/fstab.ranchu --early
trigger post-fs // 创建和挂载一些目录 如 /mnt/user/0 -> /storage
# Mount fstab in init.{$device}.rc by mount_all with '--late' parameter
# to only mount entries with 'latemount'. This is needed if '--early' is
# specified in the previous mount_all command on the fs stage.
# With /system mounted and properties form /system + /factory available,
# some services can be started.
trigger late-fs // 如 mount_all /vendor/etc/fstab.ranchu --late , /data配置的latemount
# Now we can mount /data. File encryption requires keymaster to decrypt
# /data, which in turn can only be loaded when system properties are present.
trigger post-fs-data // 挂载 /data,创建一些主要目录
# Should be before netd, but after apex, properties and logging is available.
trigger load_bpf_programs
# Now we can start zygote for devices with file based encryption
trigger zygote-start //启动zygote和相关服务
# Remove a file to wake up anything waiting for firmware.
trigger firmware_mounts_complete
trigger early-boot
trigger boot // 启动 hal、core 类别的 service,也就是 native daemons
trigger 会触发调用do_trigger,向事件队列添加相关触发器,之后会依次取出相关事件执行对应的action
/// @system/core/init/builtins.cpp
static Result<void> do_trigger(const BuiltinArguments& args) {
ActionManager::GetInstance().QueueEventTrigger(args[1]);
return {};
}
/// system/core/init/action_manager.cpp
void ActionManager::QueueEventTrigger(const std::string& trigger) {
auto lock = std::lock_guard{event_queue_lock_};
event_queue_.emplace(trigger);
}
queue_property_triggers
这个触发器是在 late-init 触发器之后加入事件队列的,早于late-init的action中添加的触发器,比如early-fs。该触发器对应的action是queue_property_triggers_action
/// @system/core/init/init.cpp
static Result<void> queue_property_triggers_action(const BuiltinArguments& args) {
// 添加一个enable_property_trigger,将触发init使能处理属性事件。 从时序来看,将晚于 boot trigger 执行
// late-init -> queue_property_triggers -> boot -> enable_property_trigger
ActionManager::GetInstance().QueueBuiltinAction(property_enable_triggers_action, "enable_property_trigger");
ActionManager::GetInstance().QueueAllPropertyActions(); // 将所有属性满足的action添加到队列
return {};
}
static Result<void> property_enable_triggers_action(const BuiltinArguments& args) {
/* Enable property triggers. */
property_triggers_enabled = 1;
return {};
}
将所有属性匹配的action添加到队列。
/// @system/core/init/action_manager.cpp
void ActionManager::QueueAllPropertyActions() {
QueuePropertyChange("", "");
}
// 比如当此时 persist.traced_perf.enable 的值已经为1 ,则会添加相关action到队列,最终会执行 start traced_perf
// init/traced_perf.rc
on property:persist.traced_perf.enable=1
start traced_perf
trigger zygote-start
zygote-start触发器是用来启动zygote和相关进程的,整个action的执行会依赖加密状态来执行,这些encrypted状态是在执行 mount_all 操作中设置的。可以看到,依次启动了statsd、netd和zygote等进程,zygote的启动会建立系统服务system_server进程的创建。
on zygote-start && property:ro.crypto.state=encrypted && property:ro.crypto.type=file
wait_for_prop odsign.verification.done 1
# A/B update verifier that marks a successful boot.
exec_start update_verifier_nonencrypted
start statsd
start netd
start zygote # 启动zygote进程
start zygote_secondary
trigger boot
触发boot事件
on boot
...
# Update dm-verity state and set partition.*.verified properties.
verity_update_state
# Start standard binderized HAL daemons
class_start hal // 启动类别为hal的服务(在rc中使用 class hal定义), 比如vendor.audio-hal
class_start core // 启动类别为core的服务,比如 surfaceflinger
总结
init是kernel启动的第一个用户空间进程(pid为1),它在经历FirstStage、selinux_setup和SecondStage后,进入loop循环等待事件发生,比如属性事件或者子进程死亡处理。流程大致如下(正常开机模式):
-
FirstStage 挂载一些基础文件系统和加载内核模块等
-
selinux_setup 执行selinux的初始化
-
SecondStage 挂载其他文件系统,启动属性服务,执行boot流程等,主要逻辑都在这里实现
-
PropertyInit - StartPropertyService 初始化和启动属性服务
-
LoadBootScripts 解析开机脚本 rc文件
-
early-init 早期init阶段,执行启动 ueventd
-
init init阶段,在此阶段会启动logd、servicemanager、hwservicemanager、vndservicemanager
-
late-init 末期init
- early-fs 启动 vold
- fs 使用mount_all挂载 init.{$device}.rc 中的fstab相关分区,使用 --early 参数
- post-fs 创建和挂载一些目录 如 /mnt/user/0 -> /storage
- late-fs 使用mount_all挂载 init.{$device}.rc 中的fstab相关分区,使用 --late 参数
- post-fs-data 创建/data一些主要目录
- load_bpf_programs
- zygote-start 触发启动zygote 框架
- firmware_mounts_complete
- early-boot 在boot之前的一个事件
- boot 启动核心native服务,如 surfaceflinger、audioserver
-
queue_property_triggers 添加property_triggers,早于early-fs 晚于late-init
- enable_property_trigger 晚于boot trigger添加,在其之后执行。触发使能init处理属性事件
- QueueAllPropertyActions 将所有属性匹配的action添加到队列
-
进入loop循环等待事件发生并处理(主要以下几种)
- 处理build-in action,在执行结束后被移除(oneshot)
- 处理唤醒事件
- 处理属性事件
- 处理子进程死亡事件
-