1 题目:
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
Divide and Conquer Array Dynamic Programming
2 分析:
要找最大连续的子数组。好吧,动态规划题,想了半天,想不出递推式怎么写,可能与做的太少有关。只分析出求F(n)的话,有两种情况,一种是F(n-1)最大子串里面有A[n-1],一种没有,然后我就不知道怎么写了。。。看了看别人的代码,分析了一下,定义一个curSum,取肯定有A[i]的最大子串,然后比较maxSum与curSum就行了。
标记函数可以将
maxSum = Math.max(maxSum, curSum);
改为if语句,存开始序号和子串长度。
3 代码:
public int maxSubArray(int[] A){ if (A.length == 0) { return 0; } int maxSum = A[0]; int curSum = A[0]; int len = A.length; for (int i = 1; i < len; i++) { curSum = Math.max(curSum + A[i], A[i]); maxSum = Math.max(maxSum, curSum); } return maxSum; }