三次样条插值matlab实现

 

三次样条插值matlab实现

%三次样条差值-matlab通用程序 - zhangxiaolu2015的专栏 - CSDN博客 https://blog.csdn.net/zhangxiaolu2015/article/details/42744823

%【图文】三次样条插值算法详解_百度文库 https://wenku.baidu.com/view/14423f2e1711cc7931b716ae.html与课堂使用PPT一致。

clc

clear

x=input('请按照格式[x1,x2,x3...]格式输入y=f(x)函数已知点的横坐标xi='); %三次样条差值函数

y=input('请按照格式[y1,y2,y3...]格式输入y=f(x)函数已知点对应的纵坐标yi=');

x

x = 1x4 double
1 2 4 5
 
 

y

y = 1x4 double
1 3 4 2
 
 

n=size(x,2); %特别注意,matlab中的矩阵编号是从1开始的,而教材上的矩阵编号是从0开始的,即本程序n比PPT上n值大1

for k=2:n %计算h(i)

h(k-1)=x(k)-x(k-1);

end

for k=1:(n-2) %计算μ和λ

mu(k)=h(k)/(h(k)+h(k+1));

lambda(k)=1-mu(k);

end

mu

mu = 1x2 double
0.3333 0.6667
 
 

lambda

lambda = 1x2 double
0.6667 0.3333
 
 

以上无论是M还是m关系式矩阵通用。

for k=1:(n-2)

g(k)=3*(lambda(k)*(y(k+1)-y(k))/h(k)+mu(k)*(y(k+2)-y(k+1))/h(k+1)); %计算g(1)到g(n-2)

end

fprintf('边界条件类型选择:\n1.已知f(a)和f(b)的二阶导数\n2.已知f(a)和f(b)的一阶导数\n3.y=f(x)是以T=b-a为周期的周期函数\n');

边界条件类型选择:
1.已知f(a)和f(b)的二阶导数
2.已知f(a)和f(b)的一阶导数
3.y=f(x)是以T=b-a为周期的周期函数

in=input('请输入对应序号:');

if in==1

in

M(1)=input('请输入f(a)的二阶导数值:');

M(n)=input('请输入f(b)的二阶导数值:');

M(1)

M(n)

A=zeros(n,n); %构造追赶法所需的A和b

for k=2:(n-1)

A(k,k)=2;

A(k,k+1)=mu(k-1);

A(k,k-1)=lambda(k-1);

end

A(1,1)=2;

A(1,2)=1;

A(end,end)=2;

A(end,end-1)=1;

A

b=zeros(n,1);

for k=2:(n-1)

b(k,1)=g(k-1);

end

b(1,1)=3*((y(2)-y(1))/h(1)-2*h(1)*M(1));

b(n,1)=3*((y(n)-y(n-1))/h(n-1)+2*h(n-1)*M(n));

b

b=b';

m=zhuigan(A,b); %利用追赶法求解成功,这里的参数b形式应为行向量而非列向量

 
 

elseif in==2

y0=input('请输入f(a)的一阶导数值:');

yn=input('请输入f(b)的一阶导数值:');

A=zeros(n-2,n-2); %构造追赶法所需的A和b

for k=2:(n-3)

A(k,k)=2;

A(k,k+1)=mu(k);

A(k,k-1)=lambda(k);

end

A(1,1)=2;

A(1,2)=mu(1);

A(end,end)=2;

A(end,end-1)=lambda(n-2);

b=zeros(n-2,1);

for k=2:(n-3)

b(k,1)=g(k);

end

b(1,1)=g(1)-lambda(1)*y0;

b(end,1)=g(n-2)-mu(n-2)*yn;

b=b';

m=zhuigan(A,b);%利用追赶法求解

m(1)

m(2)

%这里解出m(1)至m(n-2),为能代入带一阶导数的分段三次埃米尔特插值多项式,要对m进行调整

for k=(n-2):-1:1

m(k+1)=m(k);

end

m(1)=y0;

m(n)=yn;

 

elseif in==3

A=zeros(n,n); %构造追赶法所需的A和b

for k=2:(n-1)

A(k,k)=2;

A(k,k+1)=mu(k-1);

A(k,k-1)=lambda(k-1);

end

A(1,1)=2;

A(1,2)=mu(1);

A(1,end)=lambda(1);

A(end,end)=2;

A(end,end-1)=lambda(n-1);

A(end,1)=mu(n-1);

b=zeros(n-1,1);

for k=1:(n-1)

b(k,1)=d(k+1);

end

N=LU_fenjieqiuxianxingfangcheng(A,b); %利用LU分解求解线性方程组

for k=1:(n-1)

M(k+1)=N(k,1);

end

M(1)=M(n);

else

fprintf('您输入的序号不正确');

end

 
ans = 0
ans = 0
 
A = 4x4 double
2.0000 1.0000 0 0 0.6667 2.0000 0.3333 0 0 0.3333 2.0000 0.6667 0 0 1.0000 2.0000
 
 
b = 4x1 double
6.0000 4.5000 -3.5000 -6.0000
 
 
c = 1x3 double
0.6667 0.3333 1.0000
 
 
a = 1x4 double
2 2 2 2
 
 
b = 1x3 double
1.0000 0.3333 0.6667
 
 

m

m = 1x4 double
2.1250 1.7500 -1.2500 -2.3750
 
 
 
 
 
 
 
 
 
 
  $$
 1 %三转角公式
 2 
 3 for k=1:(n-1)
 4 
 5   clear S1
 6 
 7   syms X
 8 
 9   S1=(1-2*(X-x(k))/(-h(k)))*((X-x(k+1))/(h(k)))^2*y(k)+...
10 
11     (X-x(k))*((X-x(k+1))/(h(k)))^2*m(k)+...
12 
13     (1-2*(X-x(k+1))/(h(k)))*((X-x(k))/(h(k)))^2*y(k+1)+...
14 
15     (X-x(k+1))*((X-x(k))/(h(k)))^2*m(k+1);
16 
17   fprintf('当%d=<X=<%d时\n',x(k),x(k+1));
18 
19   S=expand(S1)
20 
21 end

 

 

$$
\begin{array}{l}
{\rm{S(x)}} = {m_k}(X - {x_k}){\left( {\frac{{X - {x_{k + 1}}}}{{{h_k}}}} \right)^2} + \\
{m_{k + 1}}(X - {x_{k + 1}}){\left( {\frac{{X - {x_k}}}{{{h_k}}}} \right)^2} + \\
{y_k}\left( {1 -  \frac{{2(X - {x_k})}}{{{-h_k}}}} \right){\left( {\frac{{X - {x_{k + 1}}}}{{{h_k}}}} \right)^2} + \\
{y_{k + 1}}{\left( {\frac{{X - {x_k}}}{{{h_k}}}} \right)^2}\left( {1 - \frac{{2(X - {x_{k + 1}})}}{{{h_k}}}} \right)
\end{array}
$$

 

 
当1=<X=<2时
S =
当2=<X=<4时
 
S =
当4=<X=<5时
 
S =

 

 

 

 

 

 

posted @ 2018-10-12 20:17  lingr7  阅读(28241)  评论(3编辑  收藏  举报