《用Python玩转数据》项目—线性回归分析入门之波士顿房价预测(二)
接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测。
二、使用tensorflow拟合boston房价datasets
1、数据处理依然利用sklearn来分训练集和测试集。
2、使用一层隐藏层的简单网络,试下来用当前这组超参数收敛较快,准确率也可以。
3、激活函数使用relu来引入非线性因子。
4、原本想使用如下方式来动态更新lr,但是尝试下来效果不明显,就索性不要了。
def learning_rate(epoch): if epoch < 200: return 0.01 if epoch < 400: return 0.001 if epoch < 800: return 1e-4
好了,废话不多说了,看代码如下:
from sklearn import datasets from sklearn.model_selection import train_test_split import os import matplotlib.pyplot as plt import numpy as np import tensorflow as tf dataset = datasets.load_boston() x = dataset.data target = dataset.target y = np.reshape(target,(len(target), 1)) x_train, x_verify, y_train, y_verify = train_test_split(x, y, random_state=1) y_train = y_train.reshape(-1) train_data = np.insert(x_train, 0, values=y_train, axis=1) def r_square(y_verify, y_pred): var = np.var(y_verify) mse = np.sum(np.power((y_verify-y_pred.reshape(-1,1)), 2))/len(y_verify) res = 1 - mse/var print('var:', var) print('MSE-ljj:', mse) print('R2-ljj:', res) EPOCH = 3000 lr = tf.placeholder(tf.float32, [], 'lr') x = tf.placeholder(tf.float32, shape=[None, 13], name='input_feature_x') y = tf.placeholder(tf.float32, shape=[None, 1], name='input_feature_y') W = tf.Variable(tf.truncated_normal(shape=[13, 10], stddev=0.1)) b = tf.Variable(tf.constant(0., shape=[10])) W2 = tf.Variable(tf.truncated_normal(shape=[10, 1], stddev=0.1)) b2 = tf.Variable(tf.constant(0., shape=[1])) with tf.Session() as sess: hidden1 = tf.nn.relu(tf.add(tf.matmul(x, W), b)) y_predict = tf.add(tf.matmul(hidden1, W2), b2) loss = tf.reduce_mean(tf.reduce_sum(tf.pow(y-y_predict,2), reduction_indices=[1])) print(loss.shape) train = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() W_res = 0 b_res = 0 try: last_chk_path = tf.train.latest_checkpoint(checkpoint_dir='/home/ljj/PycharmProjects/mooc/train_record') saver.restore(sess, save_path=last_chk_path) except: print('no save file to recover-----------start new train instead--------') loss_list = [] over_flag = 0 for i in range(EPOCH): if over_flag ==1: break y_t = train_data[:, 0].reshape(-1, 1) _, W_res, b_res, loss_train = sess.run([train, W, b, loss], feed_dict={x: train_data[:, 1:], y: y_t, lr: 0.01}) checkpoint_file = os.path.join('/home/ljj/PycharmProjects/mooc/train_record', 'checkpoint') saver.save(sess, checkpoint_file, global_step=i) loss_list.append(loss_train) if loss_train < 0.2: over_flag = 1 break if i %500 == 0: print('EPOCH = {:}, train_loss ={:}'.format(i, loss_train)) if i % 500 == 0: r = loss.eval(session=sess, feed_dict={x: x_verify, y: y_verify, lr: 0.01}) print('verify_loss = ',r) np.random.shuffle(train_data) plt.plot(range(len(loss_list)-1), loss_list[1:], 'r') plt.show() print('final loss = ',loss.eval(session=sess, feed_dict={x: x_verify, y: y_verify, lr: 0.01})) y_pred = sess.run(y_predict, feed_dict={x: x_verify, y: y_verify, lr: 0.01}) plt.subplot(2,1,1) plt.xlim([0,50]) plt.plot(range(len(y_verify)), y_pred,'b--') plt.plot(range(len(y_verify)), y_verify,'r') plt.title('validation') y_ss = sess.run(y_predict, feed_dict={x: x_train, y: y_train.reshape(-1, 1), lr: 0.01}) plt.subplot(2,1,2) plt.xlim([0,50]) plt.plot(range(len(y_train)), y_ss,'r--') plt.plot(range(len(y_train)), y_train,'b') plt.title('train') plt.savefig('tf.png') plt.show() r_square(y_verify, y_pred)
训练了大概3000个epoch后,保存模型,之后可以多次训练,但是loss基本收敛了,没有太大变化。
输出结果如下:
final loss = 15.117827
var: 99.0584735569471
MSE-ljj: 15.11782691349897
R2-ljj: 0.8473848185757882
从图像上看,拟合效果也是一般,再拿一个放大版本的validation图,同样取前50个样本,这样方便和之前的线性回归模型对比。
最后我们还是用数据来说明:
tf模型结果中,
R2:0.847 > 0. 779
MSE:15.1 < 21.8
都比sklearn的线性回归结果要好。所以,此tf模型对波士顿房价数据的可解释性更强。
还在成长。。。