Exercise 1.8 牛顿法求立方根
题目:
Newton's method for cube roots is based on the fact that if y is an approximation to the cube root of x, then a better approximation is given by the value: (r/(y*y)+2*y)/3. Use this formula to implement a cube-root procedure analogous to the square-root procedure. (In section 1.3.4 we will see how to implement Newton's method in general as an abstraction of these square- root and cube-root procedures.)
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
牛顿法求平方根、立方根,实际上拥有共同的概念元素:
1. 前一个逼近值(previous guess)
2. 当前逼近值(current guess)
3. 目标值(x)
4. 判断当前逼近值是否已经足够好(good_enough)
5. 根据x和current guess求出下一个逼近值(improve_guess)
平方根、立方根的唯一差异在于improve_guess的具体实现,即题目中黑体加粗的求值公式。
平方根:
def improve_sqrt(guess: Double, x: Double): Double = { return (x / guess + guess) / 2 }
立方根:
def improve_cubert(guess:Double, x:Double):Double={ return (x/(guess*guess)+2*guess)/3 }
计算引擎是:
def root_iter(prev_guess: Double, guess: Double, x: Double, good_enough: (Double, Double, Double) => Boolean, improve:(Double,Double)=>Double): Double = { if (good_enough(prev_guess, guess, x)) { return guess } else { root_iter(guess, improve(guess, x), x, good_enough, improve) }
}