设计模式6---代理模式(Proxy Pattern)
代理设计模式
定义:为其他对象提供一种代理以控制对这个对象的访问。
1. 静态代理
静态代理在使用时,需要定义接口或者父类,被代理对象与代理对象都实现相同的接口或者是继承相同父类。
接口:IUserDao.java
/** * 接口 */ public interface IUserDao { void save(); }
目标对象:UserDao.java
/** * 目标对象(接口的实现类) */ public class UserDao implements IUserDao { public void save() { System.out.println("----已经保存数据!----"); } }
代理对象:UserDaoProxy.java
/** * 代理对象,静态代理 */ public class UserDaoProxy implements IUserDao{ //接收保存目标对象 private IUserDao target; public UserDaoProxy(IUserDao target){ this.target=target; } public void save() { System.out.println("开始事务..."); target.save();//执行目标对象的方法 System.out.println("提交事务..."); } }
测试类:Test.java
/** * 测试类 */ public class Test { public static void main(String[] args) { //目标对象 UserDao target = new UserDao(); //代理对象,把目标对象传给代理对象,建立代理关系 UserDaoProxy proxy = new UserDaoProxy(target); proxy.save();//执行代理方法 } }
静态代理总结:
1.可以做到在不修改目标对象的功能前提下,对目标功能扩展.
2.缺点:因为代理对象需要与目标对象实现一样的接口, 所以会有很多代理类,类太多。同时,一旦接口增加方法,目标对象与代理对象都要维护。
如何解决静态代理中的缺点,那就是动态代理方式。
2. 动态代理使用
Java动态代理机制以巧妙的方式实现了代理模式的设计理念。 先看一下动态代理的使用:
package dynamic.proxy; import java.lang.reflect.InvocationHandler; import java.lang.reflect.Method; import java.lang.reflect.Proxy; /** * 实现自己的InvocationHandler * */ public class MInvocationHandler implements InvocationHandler { // 目标对象 private Object target; /** * 构造方法 * @param target 目标对象 */ public MInvocationHandler(Object target) { super(); this.target = target; } /** * 执行目标对象的方法 */ public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { // 在目标对象的方法执行之前简单的打印一下 System.out.println("------------------before------------------"); // 执行目标对象的方法 Object result = method.invoke(target, args); // 在目标对象的方法执行之后简单的打印一下 System.out.println("-------------------after------------------"); return result; } /** * 获取目标对象的代理对象 * @return 代理对象 */ public Object getProxy() { return Proxy.newProxyInstance(Thread.currentThread().getContextClassLoader(), target.getClass().getInterfaces(), this); } }
package dynamic.proxy; /** * 目标对象实现的接口,用JDK来生成代理对象一定要实现一个接口 * */ public interface UserService { /** * 目标方法 */ public abstract void add(); }
package dynamic.proxy; /** * 目标对象 * */ public class UserServiceImpl implements UserService { /* (non-Javadoc) * @see dynamic.proxy.UserService#add() */ public void add() { System.out.println("----------add-----------"); } }
package dynamic.proxy; import org.junit.Test; /** * 动态代理测试类 */ public class ProxyTest { @Test public void testProxy() throws Throwable { // 实例化目标对象 UserService userService = new UserServiceImpl(); // 实例化InvocationHandler MInvocationHandler invocationHandler = new MInvocationHandler(userService); // 根据目标对象生成代理对象 UserService proxy = (UserService) invocationHandler.getProxy(); // 调用代理对象的方法 proxy.add(); } }
执行结果如下:
------------------before------------------
--------------------add---------------
-------------------after------------------
用起来是很简单吧,其实这里基本上就是AOP的一个简单实现了,在目标对象的方法执行之前和执行之后进行了增强。
Spring的AOP实现其实也是用了Proxy和InvocationHandler这两个东西的。 使用比较简单,看一下JDK是怎样生成代理对象的,即Proxy类的静态方法newProxyInstance。
3、动态代理源码解析
public static Class<?> getProxyClass(ClassLoader loader, Class<?>... interfaces) throws IllegalArgumentException { // 如果目标类实现的接口数大于65535个则抛出异常(我XX,谁会写这么NB的代码啊?) if (interfaces.length > 65535) { throw new IllegalArgumentException("interface limit exceeded"); } // 声明代理对象所代表的Class对象(有点拗口) Class proxyClass = null; String[] interfaceNames = new String[interfaces.length]; Set interfaceSet = new HashSet(); // for detecting duplicates // 遍历目标类所实现的接口 for (int i = 0; i < interfaces.length; i++) { // 拿到目标类实现的接口的名称 String interfaceName = interfaces[i].getName(); Class interfaceClass = null; try { // 加载目标类实现的接口到内存中 interfaceClass = Class.forName(interfaceName, false, loader); } catch (ClassNotFoundException e) { } if (interfaceClass != interfaces[i]) { throw new IllegalArgumentException( interfaces[i] + " is not visible from class loader"); } // 中间省略了一些无关紧要的代码 ....... // 把目标类实现的接口代表的Class对象放到Set中 interfaceSet.add(interfaceClass); interfaceNames[i] = interfaceName; } // 把目标类实现的接口名称作为缓存(Map)中的key Object key = Arrays.asList(interfaceNames); Map cache; synchronized (loaderToCache) { // 从缓存中获取cache cache = (Map) loaderToCache.get(loader); if (cache == null) { // 如果获取不到,则新建地个HashMap实例 cache = new HashMap(); // 把HashMap实例和当前加载器放到缓存中 loaderToCache.put(loader, cache); } } synchronized (cache) { do { // 根据接口的名称从缓存中获取对象 Object value = cache.get(key); if (value instanceof Reference) { proxyClass = (Class) ((Reference) value).get(); } if (proxyClass != null) { // 如果代理对象的Class实例已经存在,则直接返回 return proxyClass; } else if (value == pendingGenerationMarker) { try { cache.wait(); } catch (InterruptedException e) { } continue; } else { cache.put(key, pendingGenerationMarker); break; } } while (true); } try { // 中间省略了一些代码 ....... // 这里就是动态生成代理对象的最关键的地方 byte[] proxyClassFile = ProxyGenerator.generateProxyClass( proxyName, interfaces); try { // 根据代理类的字节码生成代理类的实例 proxyClass = defineClass0(loader, proxyName, proxyClassFile, 0, proxyClassFile.length); } catch (ClassFormatError e) { throw new IllegalArgumentException(e.toString()); } } // add to set of all generated proxy classes, for isProxyClass proxyClasses.put(proxyClass, null); } // 中间省略了一些代码 ....... return proxyClass; }
进去ProxyGenerator类的静态方法generateProxyClass,这里是真正生成代理类class字节码的地方。
public static byte[] generateProxyClass(final String name, Class[] interfaces) { ProxyGenerator gen = new ProxyGenerator(name, interfaces); // 这里动态生成代理类的字节码,由于比较复杂就不进去看了 final byte[] classFile = gen.generateClassFile(); // 如果saveGeneratedFiles的值为true,则会把所生成的代理类的字节码保存到硬盘上 if (saveGeneratedFiles) { java.security.AccessController.doPrivileged( new java.security.PrivilegedAction<Void>() { public Void run() { try { FileOutputStream file = new FileOutputStream(dotToSlash(name) + ".class"); file.write(classFile); file.close(); return null; } catch (IOException e) { throw new InternalError( "I/O exception saving generated file: " + e); } } }); } // 返回代理类的字节码 return classFile; }
现在,JDK是怎样动态生成代理类的字节的原理已经一目了然了。
再来解决另外一个问题“由谁来调用InvocationHandler的invoke方法“。要解决这个问题就要看一下JDK到底为我们生成了一个什么东西。用以下代码可以获取到JDK为我们生成的字节码并写到硬盘中。
5 import dynamic.proxy.UserService; 6 import java.lang.reflect.*; 7 8 public final class $Proxy11 extends Proxy implements UserService 10 { 11 12 // 构造方法,参数就是刚才传过来的MyInvocationHandler类的实例 13 public $Proxy11(InvocationHandler invocationhandler) 14 { 15 super(invocationhandler); 16 } 17 18 public final boolean equals(Object obj) 19 { 20 try 21 { 22 return ((Boolean)super.h.invoke(this, m1, new Object[] { 23 obj 24 })).booleanValue(); 25 } 26 catch(Error _ex) { } 27 catch(Throwable throwable) 28 { 29 throw new UndeclaredThrowableException(throwable); 30 } 31 } 32 33 /** 34 * 这个方法是关键部分 35 */ 36 public final void add() 37 { 38 try 39 { 40 // 实际上就是调用MyInvocationHandler的public Object invoke(Object proxy, Method method, Object[] args)方法,第二个问题就解决了 41 super.h.invoke(this, m3, null); 42 return; 43 } 44 catch(Error _ex) { } 45 catch(Throwable throwable) 46 { 47 throw new UndeclaredThrowableException(throwable); 48 } 49 } 50 51 public final int hashCode() 52 { 53 try 54 { 55 return ((Integer)super.h.invoke(this, m0, null)).intValue(); 56 } 57 catch(Error _ex) { } 58 catch(Throwable throwable) 59 { 60 throw new UndeclaredThrowableException(throwable); 61 } 62 } 63 64 public final String toString() 65 { 66 try 67 { 68 return (String)super.h.invoke(this, m2, null); 69 } 70 catch(Error _ex) { } 71 catch(Throwable throwable) 72 { 73 throw new UndeclaredThrowableException(throwable); 74 } 75 } 76 77 private static Method m1; 78 private static Method m3; 79 private static Method m0; 80 private static Method m2; 81 82 // 在静态代码块中获取了4个方法:Object中的equals方法、UserService中的add方法、Object中的hashCode方法、Object中toString方法 83 static 84 { 85 try 86 { 87 m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[] { 88 Class.forName("java.lang.Object") 89 }); 90 m3 = Class.forName("dynamic.proxy.UserService").getMethod("add", new Class[0]); 91 m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]); 92 m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]); 93 } 94 catch(NoSuchMethodException nosuchmethodexception) 95 { 96 throw new NoSuchMethodError(nosuchmethodexception.getMessage()); 97 } 98 catch(ClassNotFoundException classnotfoundexception) 99 { 100 throw new NoClassDefFoundError(classnotfoundexception.getMessage()); 101 } 102 } 103 } 104
4、动态代理源码解析
类Proxy的代码实现 Proxy的主要静态变量
// 映射表:用于维护类装载器对象到其对应的代理类缓存 private static Map loaderToCache = new WeakHashMap(); // 标记:用于标记一个动态代理类正在被创建中 private static Object pendingGenerationMarker = new Object(); // 同步表:记录已经被创建的动态代理类类型,主要被方法 isProxyClass 进行相关的判断 private static Map proxyClasses = Collections.synchronizedMap(new WeakHashMap()); // 关联的调用处理器引用 protected InvocationHandler h;
Proxy的构造方法
// 由于 Proxy 内部从不直接调用构造函数,所以 private 类型意味着禁止任何调用 private Proxy() {} // 由于 Proxy 内部从不直接调用构造函数,所以 protected 意味着只有子类可以调用 protected Proxy(InvocationHandler h) {this.h = h;}
Proxy静态方法newProxyInstance
public static Object newProxyInstance(ClassLoader loader, Class<?>[]interfaces,InvocationHandler h) throws IllegalArgumentException { // 检查 h 不为空,否则抛异常 if (h == null) { throw new NullPointerException(); } // 获得与指定类装载器和一组接口相关的代理类类型对象 Class cl = getProxyClass(loader, interfaces); // 通过反射获取构造函数对象并生成代理类实例 try { Constructor cons = cl.getConstructor(constructorParams); return (Object) cons.newInstance(new Object[] { h }); } catch (NoSuchMethodException e) { throw new InternalError(e.toString()); } catch (IllegalAccessException e) { throw new InternalError(e.toString()); } catch (InstantiationException e) { throw new InternalError(e.toString()); } catch (InvocationTargetException e) { throw new InternalError(e.toString()); } }
类Proxy的getProxyClass方法调用ProxyGenerator的 generateProxyClass方法产生ProxySubject.class的二进制数据:
public static byte[] generateProxyClass(final String name, Class[] interfaces)
我们可以import sun.misc.ProxyGenerator,调用 generateProxyClass方法产生binary data,然后写入文件,最后通过反编译工具来查看内部实现原理。 反编译后的ProxySubject.java Proxy静态方法newProxyInstance
import java.lang.reflect.*; public final class ProxySubject extends Proxy implements Subject { private static Method m1; private static Method m0; private static Method m3; private static Method m2; public ProxySubject(InvocationHandler invocationhandler) { super(invocationhandler); } public final boolean equals(Object obj) { try { return ((Boolean)super.h.invoke(this, m1, new Object[] { obj })).booleanValue(); } catch(Error _ex) { } catch(Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } public final int hashCode() { try { return ((Integer)super.h.invoke(this, m0, null)).intValue(); } catch(Error _ex) { } catch(Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } public final void doSomething() { try { super.h.invoke(this, m3, null); return; } catch(Error _ex) { } catch(Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } public final String toString() { try { return (String)super.h.invoke(this, m2, null); } catch(Error _ex) { } catch(Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } static { try { m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[] { Class.forName("java.lang.Object") }); m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]); m3 = Class.forName("Subject").getMethod("doSomething", new Class[0]); m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]); } catch(NoSuchMethodException nosuchmethodexception) { throw new NoSuchMethodError(nosuchmethodexception.getMessage()); } catch(ClassNotFoundException classnotfoundexception) { throw new NoClassDefFoundError(classnotfoundexception.getMessage()); } } }
ProxyGenerator内部是如何生成class二进制数据,可以参考源代码。
private byte[] generateClassFile() { /* * Record that proxy methods are needed for the hashCode, equals, * and toString methods of java.lang.Object. This is done before * the methods from the proxy interfaces so that the methods from * java.lang.Object take precedence over duplicate methods in the * proxy interfaces. */ addProxyMethod(hashCodeMethod, Object.class); addProxyMethod(equalsMethod, Object.class); addProxyMethod(toStringMethod, Object.class); /* * Now record all of the methods from the proxy interfaces, giving * earlier interfaces precedence over later ones with duplicate * methods. */ for (int i = 0; i < interfaces.length; i++) { Method[] methods = interfaces[i].getMethods(); for (int j = 0; j < methods.length; j++) { addProxyMethod(methods[j], interfaces[i]); } } /* * For each set of proxy methods with the same signature, * verify that the methods' return types are compatible. */ for (List<ProxyMethod> sigmethods : proxyMethods.values()) { checkReturnTypes(sigmethods); } /* ============================================================ * Step 2: Assemble FieldInfo and MethodInfo structs for all of * fields and methods in the class we are generating. */ try { methods.add(generateConstructor()); for (List<ProxyMethod> sigmethods : proxyMethods.values()) { for (ProxyMethod pm : sigmethods) { // add static field for method's Method object fields.add(new FieldInfo(pm.methodFieldName, "Ljava/lang/reflect/Method;", ACC_PRIVATE | ACC_STATIC)); // generate code for proxy method and add it methods.add(pm.generateMethod()); } } methods.add(generateStaticInitializer()); } catch (IOException e) { throw new InternalError("unexpected I/O Exception"); } /* ============================================================ * Step 3: Write the final class file. */ /* * Make sure that constant pool indexes are reserved for the * following items before starting to write the final class file. */ cp.getClass(dotToSlash(className)); cp.getClass(superclassName); for (int i = 0; i < interfaces.length; i++) { cp.getClass(dotToSlash(interfaces[i].getName())); } /* * Disallow new constant pool additions beyond this point, since * we are about to write the final constant pool table. */ cp.setReadOnly(); ByteArrayOutputStream bout = new ByteArrayOutputStream(); DataOutputStream dout = new DataOutputStream(bout); try { /* * Write all the items of the "ClassFile" structure. * See JVMS section 4.1. */ // u4 magic; dout.writeInt(0xCAFEBABE); // u2 minor_version; dout.writeShort(CLASSFILE_MINOR_VERSION); // u2 major_version; dout.writeShort(CLASSFILE_MAJOR_VERSION); cp.write(dout); // (write constant pool) // u2 access_flags; dout.writeShort(ACC_PUBLIC | ACC_FINAL | ACC_SUPER); // u2 this_class; dout.writeShort(cp.getClass(dotToSlash(className))); // u2 super_class; dout.writeShort(cp.getClass(superclassName)); // u2 interfaces_count; dout.writeShort(interfaces.length); // u2 interfaces[interfaces_count]; for (int i = 0; i < interfaces.length; i++) { dout.writeShort(cp.getClass( dotToSlash(interfaces[i].getName()))); } // u2 fields_count; dout.writeShort(fields.size()); // field_info fields[fields_count]; for (FieldInfo f : fields) { f.write(dout); } // u2 methods_count; dout.writeShort(methods.size()); // method_info methods[methods_count]; for (MethodInfo m : methods) { m.write(dout); } // u2 attributes_count; dout.writeShort(0); // (no ClassFile attributes for proxy classes) } catch (IOException e) { throw new InternalError("unexpected I/O Exception"); } return bout.toByteArray();
总结
一个典型的动态代理创建对象过程可分为以下四个步骤:
1、通过实现InvocationHandler接口创建自己的调用处理器 IvocationHandler handler = new InvocationHandlerImpl(...);
2、通过为Proxy类指定ClassLoader对象和一组interface创建动态代理类;
Class clazz = Proxy.getProxyClass(classLoader,new Class[]{...});
3、通过反射机制获取动态代理类的构造函数,其参数类型是调用处理器接口类型;
Constructor constructor = clazz.getConstructor(new Class[]{InvocationHandler.class});
4、通过构造函数创建代理类实例,此时需将调用处理器对象作为参数被传入,
Interface Proxy = (Interface)constructor.newInstance(new Object[] (handler));
为了简化对象创建过程,Proxy类中的newInstance方法封装了2~4,只需两步即可完成代理对象的创建。生成的ProxySubject继承Proxy类实现Subject接口,实现的Subject的方法实际调用处理器的invoke方法,而invoke方法利用反射调用的是被代理对象的的方法(Object result=method.invoke(proxied,args))。
5. 美中不足
诚然,Proxy已经设计得非常优美,但是还是有一点点小小的遗憾之处,那就是它始终无法摆脱仅支持interface代理的桎梏,因为它的设计注定了这个遗憾。回想一下那些动态生成的代理类的继承关系图,它们已经注定有一个共同的父类叫Proxy。Java的继承机制注定了这些动态代理类们无法实现对class的动态代理,原因是多继承在Java中本质上就行不通。有很多条理由,人们可以否定对 class代理的必要性,但是同样有一些理由,相信支持class动态代理会更美好。接口和类的划分,本就不是很明显,只是到了Java中才变得如此的细化。如果只从方法的声明及是否被定义来考量,有一种两者的混合体,它的名字叫抽象类。实现对抽象类的动态代理,相信也有其内在的价值。此外,还有一些历史遗留的类,它们将因为没有实现任何接口而从此与动态代理永世无缘。如此种种,不得不说是一个小小的遗憾。但是,不完美并不等于不伟大,伟大是一种本质,Java动态代理就是佐例。