9.主成分分析

 

一、用自己的话描述出其本身的含义:

1、特征选择

特征选择也叫特征子集选择。分为有监督学习和无监督学习。从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,将高维空间的样本通过映射或者是变换的方式转换到低维空间,达到降维的目的。

是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,是模式识别中关键的数据预处理步骤。

2、PCA  主成分分析

PCA主成分分析是利用降维的思想,多个指标转化为少数几个综合指标,从而使数据能更好的进行分析和可视化。

 

二、并用自己的话阐述出两者的主要区别

PCA改变了原来特征的形式。 
特征选取没有改变特征的形式。

posted @ 2020-05-04 18:58  ling9709  阅读(154)  评论(0编辑  收藏  举报