摘要: 本文将 RandBal 方法从二分类扩展到多分类,提出了两种集成策略。第一种方法称为多重随机平衡 MultiRandBal,该方法同时处理所有类,每个基分类器的训练数据都是随机抽样的。第二种方法是将多分类问题按照 OVO 或 OVA 的分解为两分类问题,并构建 RandBal 集成学习器,这两个版本分别称为 OVO-RandBal 和 OVA-RandBal。通过 52 个多分类数据集进行了实验,结果表明 MultiRandBal 和 OVO/OVA-RandBal 都是原始二分类 RandBal 的可行扩展,在多分类不平衡问题上的表现优于其他对比方法。 阅读全文
posted @ 2024-10-29 18:24 乌漆WhiteMoon 阅读(39) 评论(0) 推荐(0) 编辑
摘要: 针对现有工作在多分类不平衡问题的不足,本文提出了一种新的多分类联合清洗和重采样算法 MC-CCR。MC-CCR 主要使用了分解策略的思想,利用基于能量的方法对适合过采样的区域进行挖掘。与 SMOTE 相比,该方法受离群点和异常值的影响较小。接着将其与清理操作相结合,减少了重叠类分布对学习算法性能的影响。最后提出了一种迭代策略将二分类的场景扩展到多分类,MC-CCR 比经典的多分类分解策略受类间关系信息丢失的影响更小。通过多个多类不平衡基准数据集的实验研究结果表明,该方法对噪声具有较高的鲁棒性,并且与现有方法相比具有较高的性能。 阅读全文
posted @ 2024-10-29 03:25 乌漆WhiteMoon 阅读(56) 评论(0) 推荐(0) 编辑
点击右上角即可分享
微信分享提示