摘要:
本文针对多分类不平衡学习问题设计了一种基于动态集成选择的方法 DES-MI,主要思想是针对不同的样本选择不同的分类器进行集成。首先利用随机平衡框架构造一组平衡数据集训练多个基分类器作为候选池,该重采样框架混合使用了随机欠采样、随机过采样和 SMOTE。然后通过使用样本周围的实例进行加权来评估候选分类器的能力,分类器的预测性能越高,则它在局部区域内的少数类别分类能力越强。最后根据每个选定的分类器的预测结果进行多数类投票,得票最多的类被视为最终输出类。通过 KEEL 库中的 20 个多类不平衡数据集的实验,分析了动态选择在多分类不平衡数据集场景下的有效性,结果表明 DES-MI 能够提高多分类不平衡数据集的分类性能。 阅读全文