关于sru源码class Model的parameters

class Model(nn.Module):
    def __init__(self, words, args):
        super(Model, self).__init__()
        self.args = args
        self.n_d = args.d
        self.depth = args.depth
        self.drop = nn.Dropout(args.dropout)
        self.embedding_layer = EmbeddingLayer(self.n_d, words)
        self.n_V = self.embedding_layer.n_V
        if args.lstm:
            self.rnn = nn.LSTM(self.n_d, self.n_d,
                self.depth,
                dropout = args.rnn_dropout
            )
        else:
            self.rnn = MF.SRU(self.n_d, self.n_d, self.depth,
                dropout = args.rnn_dropout,
                rnn_dropout = args.rnn_dropout,
                use_tanh = 0
            )
        self.output_layer = nn.Linear(self.n_d, self.n_V)
        # tie weights
        self.output_layer.weight = self.embedding_layer.embedding.weight#我运行了一下应该是指每个单词所对应的向量

        self.init_weights()
        if not args.lstm:
            self.rnn.set_bias(args.bias)

    def init_weights(self):
        val_range = (3.0/self.n_d)**0.5
        for p in self.parameters():
            if p.dim() > 1:  # matrix
                p.data.uniform_(-val_range, val_range)
                
            else:
                p.data.zero_()
                

    def forward(self, x, hidden):
        emb = self.drop(self.embedding_layer(x))
        output, hidden = self.rnn(emb, hidden)
        output = self.drop(output)
        output = output.view(-1, output.size(2))
        output = self.output_layer(output)
        return output, hidden

    def init_hidden(self, batch_size):#hidden层的0初始化
        weight = next(self.parameters()).data
        zeros = Variable(weight.new(self.depth, batch_size, self.n_d).zero_())
        if self.args.lstm:
            return (zeros, zeros)
        else:
            return zeros

    def print_pnorm(self):#p范数
        norms = [ "{:.0f}".format(x.norm().data[0]) for x in self.parameters() ]
        sys.stdout.write("\tp_norm: {}\n".format(
            norms
        ))

这个问题源于我对Model类中的方法init_weight的理解,一直读不懂这个方法是做什么的,即self.parameters(),这个迭代器送出来的参数是什么呢,我假设这个里面应该是每一层更新的权重,所以我将sru源码的一部分给取了出来,让其输出Model里的parameters,代码如下(sru源码--language model):

#coding:UTF-8
'''
Created on 2017-12-4

@author: lai
'''
import time
import random
import math
import argparse  
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import sys
import cuda_functional as MF
 
def read_corpus(path, eos="</s>"):
    data = [ ]
    with open(path) as fin:
        for line in fin:
            data += line.split() + [ eos ]
    return data
  
def create_batches(data_text, map_to_ids, batch_size):
    data_ids = map_to_ids(data_text)
    N = len(data_ids)
    L = ((N-1) // batch_size) * batch_size
    x = np.copy(data_ids[:L].reshape(batch_size,-1).T)
    y = np.copy(data_ids[1:L+1].reshape(batch_size,-1).T)
    x, y = torch.from_numpy(x), torch.from_numpy(y)
    x, y = x.contiguous(), y.contiguous()
          
    return x,y
  
  
class EmbeddingLayer(nn.Module):#为语料中每一个单词对应的其相应的词向量
    def __init__(self, n_d, words, fix_emb=False):
        super(EmbeddingLayer, self).__init__()
        word2id = {}
        for w in words:
            if w not in word2id:
                word2id[w] = len(word2id)#把文本映射到数字上。
  
        self.word2id = word2id
        self.n_V, self.n_d = len(word2id), n_d#n_V应该是指词库大小,n_d指hidden state size  
        self.embedding = nn.Embedding(self.n_V, n_d)#赋予每个单词相应的词向量
  
    def forward(self, x):
        return self.embedding(x)
  
    def map_to_ids(self, text):#映射
        return np.asarray([self.word2id[x] for x in text],
                 dtype='int64'
        )


class Model(nn.Module):
    def __init__(self, words, args):
        super(Model, self).__init__()
        self.args = args
        self.n_d = args.d
        self.depth = args.depth
        self.drop = nn.Dropout(args.dropout)
        self.embedding_layer = EmbeddingLayer(self.n_d, words)
        self.n_V = self.embedding_layer.n_V
        if args.lstm:
            self.rnn = nn.LSTM(self.n_d, self.n_d,
                self.depth,
                dropout = args.rnn_dropout
            )
        else:
            self.rnn = MF.SRU(self.n_d, self.n_d, self.depth,
                dropout = args.rnn_dropout,
                rnn_dropout = args.rnn_dropout,
                use_tanh = 0
            )
            
        self.output_layer = nn.Linear(self.n_d, self.n_V)
        # tie weights
        self.output_layer.weight = self.embedding_layer.embedding.weight#我运行了一下应该是指每个单词所对应的向量
       
        self.init_weights()
        
        
        if not args.lstm:
            self.rnn.set_bias(args.bias)

    def init_weights(self):
        val_range = (3.0/self.n_d)**0.5
        for p in self.parameters():
            if p.dim() > 1:  # matrix
                p.data.uniform_(-val_range, val_range)
                print('222222',p.data)
               
            else:
                p.data.zero_()
                print('0000',p.data)
            
if __name__ == "__main__":
    argparser = argparse.ArgumentParser(sys.argv[0], conflict_handler='resolve')
    argparser.add_argument("--lstm", action="store_true")
    argparser.add_argument("--train", type=str, required=True, help="training file")
    
    
    argparser.add_argument("--batch_size", "--batch", type=int, default=32)
    argparser.add_argument("--unroll_size", type=int, default=35)
    argparser.add_argument("--max_epoch", type=int, default=300)
    argparser.add_argument("--d", type=int, default=910)
    argparser.add_argument("--dropout", type=float, default=0.7,
        help="dropout of word embeddings and softmax output"
    )
    argparser.add_argument("--rnn_dropout", type=float, default=0.2,
        help="dropout of RNN layers"
    )
    argparser.add_argument("--bias", type=float, default=-3,
        help="intial bias of highway gates",
    )
    argparser.add_argument("--depth", type=int, default=6)
    argparser.add_argument("--lr", type=float, default=1.0)
    argparser.add_argument("--lr_decay", type=float, default=0.98)
    argparser.add_argument("--lr_decay_epoch", type=int, default=175)
    argparser.add_argument("--weight_decay", type=float, default=1e-5)
    argparser.add_argument("--clip_grad", type=float, default=5)

    args = argparser.parse_args()
    print(args)

train = read_corpus(args.train)
model = Model(train, args)
model.cuda()
map_to_ids = model.embedding_layer.map_to_ids
train = create_batches(train, map_to_ids, args.batch_size)
print('111',model.parameters())

 再终端中输入运行命令:

python 2.py --train train.txt  

 输出:

Namespace(batch_size=32, bias=-3, clip_grad=5, d=910, depth=6, dropout=0.7, lr=1.0, lr_decay=0.98, lr_decay_epoch=175, lstm=False, max_epoch=300, rnn_dropout=0.2, train='train.txt', unroll_size=35, weight_decay=1e-05)
222222 
 4.8794e-02  5.0702e-02 -3.2630e-02  ...  -5.3750e-02  4.2253e-02  1.6446e-02
-5.1652e-02 -2.3051e-02  4.3890e-02  ...   1.8805e-02  1.6605e-02  2.6666e-02
 2.5273e-02 -5.1426e-03  5.3130e-02  ...  -4.8786e-02  4.0186e-02 -4.3724e-02
                ...                   ⋱                   ...                
-3.3133e-02  3.3400e-02  3.2185e-02  ...  -5.0593e-02 -2.3048e-02 -2.1572e-02
 2.9908e-03 -2.1938e-02 -2.1926e-02  ...  -4.5163e-02 -4.1678e-02 -5.2639e-02
-2.2036e-02  2.3908e-04  1.9383e-02  ...  -1.0341e-02  4.7491e-02 -5.0599e-02
[torch.FloatTensor of size 10000x910]

222222 
-6.1627e-03  1.9962e-02  5.6098e-02  ...   5.2324e-02 -1.0912e-02  1.7969e-02
 1.1683e-02  1.4485e-02  3.7155e-02  ...  -4.6458e-02 -2.8750e-02 -1.7442e-02
 5.3697e-02  3.4534e-02 -2.5292e-02  ...  -3.9264e-02 -2.8864e-02  2.3790e-02
                ...                   ⋱                   ...                
 7.6450e-03 -2.1589e-02 -7.6684e-03  ...  -5.6521e-02 -5.5103e-02 -3.8065e-02
 4.7252e-02  5.7209e-02 -4.9279e-02  ...  -2.0944e-02 -4.3891e-03  1.8820e-02
 2.7026e-02  3.5590e-02  1.3660e-02  ...  -1.6219e-02 -2.1856e-02  3.2678e-02
[torch.FloatTensor of size 910x2730]

0000 
 0
 0
 0
⋮ 
 0
 0
 0
[torch.FloatTensor of size 1820]

222222 
-1.2439e-02 -5.5866e-02 -3.5799e-02  ...  -4.9976e-02  7.3134e-03  4.5684e-03
-4.6130e-02 -4.7773e-02 -4.3640e-02  ...  -3.2027e-02 -8.8562e-03  4.3218e-02
-3.5260e-02  3.1456e-02  1.3324e-02  ...   3.4487e-02 -7.7102e-03  2.9963e-02
                ...                   ⋱                   ...                
-1.6921e-02 -1.5771e-02  5.3847e-02  ...   4.6351e-02  4.9333e-02 -1.1978e-02
-1.8770e-02 -1.5817e-02 -7.6655e-05  ...  -8.4615e-03  1.4490e-02 -5.6743e-02
 4.1060e-03 -2.4452e-02  2.5512e-02  ...  -2.3961e-02 -5.2609e-02  3.3445e-02
[torch.FloatTensor of size 910x2730]

0000 
 0
 0
 0
⋮ 
 0
 0
 0
[torch.FloatTensor of size 1820]

222222 
-3.6535e-02 -2.4697e-02  3.2514e-02  ...   3.0889e-02 -4.7916e-03  9.5873e-03
 4.5222e-02 -5.7333e-02  5.4079e-02  ...   1.7790e-02  3.5510e-02 -1.2171e-02
 7.5279e-03 -2.7133e-02 -5.1036e-02  ...   5.6305e-02 -2.0042e-02 -2.8884e-02
                ...                   ⋱                   ...                
-4.5409e-02 -1.6207e-02  3.4128e-02  ...  -5.6980e-02  1.6646e-02 -2.0662e-02
 2.8941e-02  3.1405e-02  5.7100e-02  ...   3.9499e-03  9.5197e-03 -2.3475e-02
-5.1939e-02 -9.6567e-03  3.1139e-02  ...  -1.0642e-02 -4.8837e-02  2.7009e-02
[torch.FloatTensor of size 910x2730]

0000 
 0
 0
 0
⋮ 
 0
 0
 0
[torch.FloatTensor of size 1820]

222222 
 1.4545e-02 -1.7484e-02 -1.3450e-02  ...   4.9990e-02  3.6013e-03 -2.5272e-02
 4.6915e-02  2.4484e-02 -2.6583e-02  ...   3.4737e-02  3.9499e-02 -2.8632e-02
 1.8722e-02 -2.1864e-02  2.4649e-02  ...   4.9049e-02  4.8219e-02  3.7317e-02
                ...                   ⋱                   ...                
-2.6708e-02  4.2176e-02  3.8287e-02  ...   3.3608e-02 -2.7229e-02  9.4752e-03
 1.2404e-02  1.7356e-02  7.0494e-03  ...   1.5802e-02 -7.5168e-03 -4.1576e-02
-3.1050e-02  3.5632e-02  2.2318e-03  ...  -1.9828e-02  4.4247e-02 -2.3669e-02
[torch.FloatTensor of size 910x2730]

0000 
 0
 0
 0
⋮ 
 0
 0
 0
[torch.FloatTensor of size 1820]

222222 
-8.6860e-03  2.4917e-02 -4.8584e-02  ...  -1.1277e-02 -1.2668e-02 -1.6445e-02
-2.5161e-02 -4.4705e-03 -4.5265e-02  ...  -3.1264e-02 -4.2164e-02 -2.4916e-02
-1.8575e-02 -1.8767e-02 -5.2647e-02  ...   5.4461e-02 -5.0726e-02 -3.1518e-03
                ...                   ⋱                   ...                
-3.1745e-02 -3.8159e-02  1.7577e-02  ...  -5.6739e-02  1.9196e-02  1.6574e-02
-5.5951e-02 -6.2410e-03 -5.6714e-02  ...   2.8419e-02  5.7141e-02  2.3431e-02
-1.7646e-02  8.7587e-04 -2.3462e-02  ...  -4.9807e-04  4.2565e-02 -4.5738e-02
[torch.FloatTensor of size 910x2730]

0000 
 0
 0
 0
⋮ 
 0
 0
 0
[torch.FloatTensor of size 1820]

222222 
-8.5008e-03  4.9589e-02  4.8005e-02  ...   5.2643e-03  1.4385e-02 -1.8161e-02
 3.0520e-03  5.5756e-02  3.9487e-02  ...  -2.9614e-03 -5.1740e-02 -4.8080e-02
 1.8335e-02 -5.5416e-02 -1.0836e-02  ...   2.8635e-02 -8.8250e-03 -1.4533e-02
                ...                   ⋱                   ...                
 5.2809e-02 -3.2417e-02  3.9305e-02  ...   2.2464e-02 -4.7438e-02  5.1094e-02
-5.5829e-02 -4.9564e-02  1.3892e-02  ...  -3.4778e-02  4.3359e-02  8.6556e-03
-2.1687e-03 -3.7360e-03  4.2217e-03  ...   3.9019e-02 -4.2598e-02  1.6985e-02
[torch.FloatTensor of size 910x2730]

0000 
 0
 0
 0
⋮ 
 0
 0
 0
[torch.FloatTensor of size 1820]

0000 
 0
 0
 0
⋮ 
 0
 0
 0
[torch.FloatTensor of size 10000]

111 <generator object Module.parameters at 0x7f6fe8cc3eb8>

 下面是方法init_weight的代码:

    def init_weights(self):
        val_range = (3.0/self.n_d)**0.5
        for p in self.parameters():
            if p.dim() > 1:  # matrix
                p.data.uniform_(-val_range, val_range)
                print('222222',p.data)
               
            else:
                p.data.zero_()
                print('0000',p.data)

 上面运行输出的结果就是p.data.uniform_(-val_range, val_range)以及p.data.zero_()的值,这里的参数我猜测一个是sru中的权重(w)另一个是偏置(b),但是这样的话就有一个疑问,这里输出的第一个大小为10000*910的tensor是词向量化得到的10000个单词的词向量,而最后一个大小为10000的tensor是最后线性分类全连接层的参数,所以剩下有六对的w和b,但是这样的话就有一个疑问,因为循环神经网络是时间共享的,所以应该只有一对才对,为了解决这个疑问,

我将用lstm做mnist分类的代码拿了出来,并将它的model的参数打印了出来,代码和结果如下所示

代码:

import torch
from torch import nn
from torch.autograd import Variable
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt


torch.manual_seed(1)    # reproducible

# Hyper Parameters
EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 64
TIME_STEP = 28          # rnn time step / image height
INPUT_SIZE = 28         # rnn input size / image width
LR = 0.01               # learning rate
DOWNLOAD_MNIST = True   # set to True if haven't download the data


# Mnist digital dataset
train_data = dsets.MNIST(
    root='./mnist/',
    train=True,                         # this is training data
    transform=transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                        # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    download=DOWNLOAD_MNIST,            # download it if you don't have it
)

# plot one example
print(train_data.train_data.size())     # (60000, 28, 28)
print(train_data.train_labels.size())   # (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[0])
plt.show()

# Data Loader for easy mini-batch return in training
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

# convert test data into Variable, pick 2000 samples to speed up testing
test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor())
test_x = Variable(test_data.test_data, volatile=True).type(torch.FloatTensor)[:2000]/255.   # shape (2000, 28, 28) value in range(0,1)
test_y = test_data.test_labels.numpy().squeeze()[:2000]    # covert to numpy array


class RNN(nn.Module):
    def __init__(self):
        super(RNN, self).__init__()

        self.rnn = nn.LSTM(         # if use nn.RNN(), it hardly learns
            input_size=INPUT_SIZE,
            hidden_size=64,         # rnn hidden unit
            num_layers=2,           # number of rnn layer
            batch_first=True,       # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
        )
        
        self.out = nn.Linear(64, 10)
        
    def forward(self, x):
        # x shape (batch, time_step, input_size)
        # r_out shape (batch, time_step, output_size)
        # h_n shape (n_layers, batch, hidden_size)
        # h_c shape (n_layers, batch, hidden_size)
        r_out, (h_n, h_c) = self.rnn(x, None)   # None represents zero initial hidden state

        # choose r_out at the last time step
        out = self.out(r_out[:, -1, :])
        return out
    def init_weights(self):
        for p in self.parameters():
            print('PPP',p.data)

rnn = RNN()
print(rnn.init_weights())
       

 

 输出:

torch.Size([60000, 28, 28])
torch.Size([60000])
PPP 
-2.0745e-02  1.2430e-01  5.5081e-02  ...  -1.4137e-02  9.4529e-02 -6.7606e-02
-1.1815e-01  8.6035e-03  4.2617e-02  ...   8.2401e-02 -1.1524e-01 -5.6738e-02
-8.2542e-02 -1.1019e-01  9.4536e-02  ...   4.0159e-02  6.2041e-02 -5.0376e-02
                ...                   ⋱                   ...                
 1.0238e-01  5.3194e-02  5.3342e-02  ...  -1.5019e-02 -1.0299e-01  2.3091e-02
 4.5909e-02 -5.0352e-02 -2.5497e-02  ...   1.1765e-01 -1.1448e-01 -3.1609e-02
 3.1011e-06 -1.0142e-01  1.2229e-01  ...   3.1813e-02  7.6921e-02  4.4233e-03
[torch.FloatTensor of size 256x28]

PPP 
-2.4325e-03  1.1478e-02  9.3458e-02  ...  -1.1657e-01 -3.6968e-03  1.2013e-01
 1.2265e-01 -2.3560e-02 -5.3951e-02  ...   4.1457e-02 -6.7170e-02  6.1414e-02
 1.2334e-01 -6.3188e-02  3.9050e-02  ...   8.4631e-02  4.0930e-04  8.3604e-03
                ...                   ⋱                   ...                
 5.6417e-02  3.7298e-02  5.7616e-02  ...   2.9125e-02 -6.6484e-02 -4.2838e-02
-6.0267e-02  8.6004e-02  4.4727e-02  ...  -4.9643e-02 -3.5065e-03 -2.5401e-02
 8.1001e-02  5.8518e-02 -9.0292e-02  ...  -1.5258e-02  5.6519e-02  6.1370e-02
[torch.FloatTensor of size 256x64]

PPP 
 0.0282
-0.0362
 0.0864
 0.0677
 0.0012
 0.0699
 0.0850
-0.0927
 0.0074
-0.0183
 0.0679
 0.1177
 0.0255
 0.1012
 0.1248
-0.0625
 0.0023
-0.0255
 0.0870
-0.0900
 0.1057
 0.1233
 0.0982
 0.0475
-0.0387
-0.0267
-0.0964
-0.0153
 0.0004
-0.0410
 0.0771
-0.0399
 0.0746
-0.0210
-0.0396
 0.1108
 0.0347
 0.0263
 0.0244
 0.1113
-0.1071
 0.1036
 0.0478
 0.0217
 0.0314
 0.0138
-0.1113
-0.1192
-0.0286
-0.0674
-0.0165
-0.0097
 0.0663
-0.1072
 0.0048
-0.1062
 0.0677
-0.0028
 0.0809
 0.0119
 0.1111
 0.0363
 0.0877
 0.0189
 0.0396
 0.0358
-0.0257
 0.0966
 0.0951
-0.1179
-0.0906
-0.0619
-0.0229
-0.1193
 0.0254
 0.0110
 0.0400
 0.0655
 0.1200
-0.0940
 0.0728
 0.0882
-0.1049
 0.0939
 0.0041
-0.0711
 0.0914
-0.0461
 0.0109
-0.0800
-0.0766
-0.0265
-0.0381
-0.0433
 0.0193
 0.0812
 0.0163
 0.0358
-0.0053
-0.0900
-0.0037
 0.1009
 0.1084
 0.1006
-0.1237
-0.1227
 0.0808
-0.0083
 0.0376
 0.0424
-0.1121
 0.0379
 0.0457
 0.0443
-0.0528
 0.0220
-0.0690
 0.0620
-0.0660
-0.1124
 0.1238
 0.1188
 0.0121
 0.0574
 0.1246
 0.1000
-0.1034
 0.0387
 0.0307
-0.0669
-0.0619
-0.0819
 0.0566
 0.0150
 0.0271
-0.0843
-0.0209
-0.0957
-0.1174
 0.1031
-0.1250
 0.0180
-0.0449
 0.0920
 0.1114
 0.0604
-0.0987
 0.0378
-0.0088
-0.0471
 0.0549
-0.1234
 0.1069
-0.0567
 0.0241
-0.0163
 0.0585
 0.0199
-0.0188
 0.0265
-0.0673
 0.0697
-0.1224
 0.1042
-0.0697
 0.0695
 0.0575
-0.1156
 0.0663
 0.1177
 0.0562
-0.0417
-0.0054
 0.0045
 0.0614
-0.0089
 0.0203
-0.1049
-0.1201
-0.0638
 0.0728
 0.0208
-0.1018
-0.0363
 0.1128
-0.0524
 0.0992
 0.0937
-0.0378
-0.0195
-0.0188
-0.0483
 0.0779
-0.0754
 0.0148
-0.0060
 0.0743
-0.0820
-0.0673
-0.1153
-0.1039
 0.1002
 0.1217
-0.0797
 0.0217
 0.1129
 0.0951
 0.0616
-0.1183
-0.0252
-0.0304
 0.1234
-0.0538
 0.0367
 0.0407
 0.1176
-0.0902
-0.0805
 0.0111
-0.0863
-0.1222
-0.0678
-0.0044
-0.1218
 0.0300
 0.0739
-0.1152
 0.1235
-0.0317
 0.0685
 0.0598
 0.1120
-0.0902
 0.1143
 0.0801
 0.0399
 0.0360
-0.1152
-0.1007
-0.1126
 0.0860
-0.0592
 0.0955
 0.0719
-0.1118
 0.0839
-0.1176
 0.0537
 0.0078
 0.1173
 0.0129
-0.0301
 0.0105
 0.0961
 0.1167
-0.0015
[torch.FloatTensor of size 256]

PPP 
-0.0896
-0.0394
 0.0575
 0.0898
-0.0369
-0.0604
-0.1172
-0.0549
-0.0869
 0.0679
 0.0554
 0.0323
 0.1063
 0.0728
 0.0056
-0.0021
-0.0868
-0.0736
-0.1204
-0.0460
-0.0145
-0.0992
 0.0601
 0.0738
 0.0064
-0.0570
-0.0947
 0.0027
 0.0669
 0.0408
-0.0228
 0.0554
 0.0698
 0.0994
 0.0893
 0.1066
 0.1231
-0.0688
 0.0152
-0.0445
-0.0341
-0.0329
 0.1052
-0.0456
-0.0409
 0.0484
 0.0768
 0.0061
 0.0429
-0.0186
 0.0379
-0.0657
-0.0839
 0.0442
-0.0539
-0.0483
 0.0572
-0.0753
-0.0779
-0.1166
 0.0279
-0.0066
 0.0854
 0.0428
 0.0903
-0.0658
 0.1244
-0.0133
 0.0524
 0.0666
-0.0662
 0.1046
-0.0649
 0.1223
 0.0819
-0.0074
 0.0782
-0.0263
-0.0057
-0.0470
 0.1029
 0.1156
 0.0884
 0.0517
 0.0135
 0.0975
 0.0406
 0.0615
-0.1222
 0.0127
 0.0202
 0.0154
-0.0490
 0.0423
-0.0904
 0.0034
 0.0662
-0.0574
 0.1162
-0.0481
-0.0147
 0.0243
 0.0805
 0.0352
 0.1058
 0.0748
-0.0551
-0.0796
-0.1161
-0.0610
-0.0102
 0.0143
 0.0791
 0.0752
 0.0099
 0.1133
-0.0766
 0.0520
 0.0810
 0.1068
-0.0541
 0.0390
 0.1153
 0.0095
 0.0118
-0.0185
-0.1179
 0.0452
 0.0302
-0.0776
 0.0909
-0.0086
 0.0527
 0.0133
 0.1130
-0.0909
 0.1160
 0.1218
 0.0347
-0.0277
 0.0401
 0.1104
-0.0635
-0.0656
-0.0928
-0.0365
 0.0579
 0.1197
-0.0098
-0.0489
-0.1086
 0.0579
 0.0282
-0.0649
 0.0929
 0.0039
 0.0507
 0.1174
 0.0951
-0.0533
 0.0641
 0.0185
 0.0011
-0.0621
 0.0776
-0.0298
-0.1170
 0.0693
 0.0740
-0.0802
 0.0799
-0.0972
-0.0010
 0.0589
-0.0510
-0.0292
-0.0500
 0.0838
-0.0176
 0.0527
-0.0037
 0.0092
 0.0478
 0.0512
-0.1239
 0.0042
-0.0440
-0.0278
-0.0434
 0.0052
 0.0466
-0.0746
-0.1143
-0.0694
 0.0201
 0.0768
-0.0924
 0.0589
-0.0591
-0.1036
 0.0529
 0.0197
-0.1067
-0.0165
-0.0370
 0.0374
-0.0818
-0.0040
 0.0659
 0.1040
-0.0619
-0.1208
-0.1066
 0.1142
 0.0920
 0.0833
 0.0214
 0.1020
-0.0266
-0.0508
 0.0550
-0.0452
-0.0696
 0.0879
 0.0680
 0.1009
-0.0232
 0.0159
-0.1064
-0.0839
 0.1089
-0.0473
-0.0158
 0.0185
-0.1224
 0.1131
 0.1089
 0.1030
-0.0451
-0.0555
-0.0767
-0.0546
 0.0403
-0.1247
-0.0622
-0.0063
-0.0933
 0.0445
 0.0727
 0.0664
-0.0864
-0.0978
 0.0016
-0.1126
 0.0716
 0.0169
[torch.FloatTensor of size 256]

PPP 
-6.6907e-02 -1.1469e-01  6.4129e-02  ...   3.8876e-02 -4.4813e-02  4.7873e-02
 1.0064e-01 -1.2048e-01  7.3207e-02  ...  -1.2326e-02 -1.1054e-01 -1.1371e-01
-9.9514e-02 -4.0268e-04  7.1349e-03  ...  -1.0321e-01 -1.2389e-01 -4.2875e-03
                ...                   ⋱                   ...                
 6.1065e-02 -5.2070e-02 -7.4900e-02  ...   3.0900e-02  5.6731e-02  1.0931e-01
-4.2554e-03  1.2137e-01 -1.0776e-02  ...  -9.8254e-03 -3.8701e-02 -2.6478e-02
-6.6246e-02  4.3564e-02  4.7540e-02  ...  -8.6700e-02 -6.5478e-03 -7.8267e-02
[torch.FloatTensor of size 256x64]

PPP 
-9.3750e-02 -8.5315e-02 -3.2224e-02  ...   4.6174e-02  1.2341e-01  7.0605e-02
-1.0107e-01 -1.1443e-01 -1.2133e-01  ...  -1.1138e-01  7.7709e-02  4.1309e-02
-1.0675e-01 -9.5286e-02  8.1566e-02  ...  -5.4656e-02 -2.9437e-02 -3.4233e-02
                ...                   ⋱                   ...                
 1.0409e-01  6.9673e-02  6.2664e-02  ...  -3.2450e-02 -7.9281e-02  1.1497e-01
-2.8081e-02 -1.2337e-01  6.9056e-02  ...  -1.0816e-01 -8.9076e-02  5.8901e-02
 6.1354e-02 -2.9104e-02 -5.5389e-02  ...  -3.9486e-02 -2.9318e-02  1.1121e-01
[torch.FloatTensor of size 256x64]

PPP 
-0.0661
 0.0039
 0.0343
-0.0428
-0.0931
 0.0150
 0.0667
-0.0503
 0.1009
 0.0786
 0.0435
-0.0952
 0.0759
-0.0155
-0.0651
-0.0916
 0.1066
 0.0204
-0.0731
 0.1241
 0.0861
-0.0129
-0.0326
-0.0626
-0.1194
 0.0683
-0.0699
-0.0822
 0.0856
-0.0142
-0.0683
-0.1223
-0.0443
-0.1215
 0.0422
 0.0083
 0.0220
-0.1037
 0.0534
 0.0914
-0.0479
-0.0273
 0.0670
-0.0777
 0.0030
 0.0343
-0.1053
-0.0880
-0.0184
 0.0800
-0.0517
-0.0596
-0.0919
 0.0129
 0.0592
 0.0903
 0.0144
-0.0522
-0.0801
-0.0489
 0.0093
-0.0173
-0.0433
-0.0887
 0.1231
-0.0524
-0.0295
-0.0432
-0.0109
-0.0625
 0.0006
-0.0658
 0.0526
-0.0297
 0.0765
-0.0805
 0.0268
-0.0250
-0.0652
-0.1201
-0.1215
-0.0732
 0.0856
-0.0101
-0.1052
-0.0456
-0.0750
-0.1149
 0.0586
 0.0594
 0.1186
 0.0742
 0.0826
 0.0612
 0.0535
 0.0827
 0.1247
-0.0917
 0.0162
 0.0731
-0.0980
-0.0508
 0.1217
-0.0242
 0.0939
 0.0172
 0.1151
 0.0706
-0.1080
-0.1144
-0.0062
 0.1227
 0.0040
 0.0451
 0.0370
 0.0963
-0.0548
 0.0073
 0.0590
-0.0860
 0.0873
 0.0123
 0.0907
-0.0206
 0.0959
 0.1026
 0.0361
 0.0632
-0.0422
 0.0934
-0.1055
-0.1022
 0.0365
-0.0169
-0.0298
 0.0096
 0.0932
-0.0130
-0.0151
 0.0693
-0.0823
-0.0176
 0.0714
-0.0319
 0.0251
 0.0878
-0.0841
-0.0804
 0.0915
 0.0282
 0.0470
-0.0592
-0.0913
-0.1234
 0.0315
 0.0182
-0.0110
 0.0275
-0.0983
 0.0250
-0.0442
-0.0113
-0.0569
 0.0902
 0.0690
 0.0543
-0.0904
 0.0373
 0.0728
-0.1175
-0.0886
-0.0702
-0.0567
-0.0740
 0.1204
-0.0247
-0.0659
 0.0075
 0.0327
 0.0215
 0.0539
-0.1142
-0.0042
 0.0156
-0.1102
 0.0036
 0.0363
-0.0509
-0.0219
-0.0764
 0.1240
-0.0074
 0.0395
 0.0058
-0.0012
 0.0614
 0.0985
 0.0915
-0.0060
-0.0268
 0.1034
 0.1116
 0.0221
 0.1064
-0.0271
 0.0554
 0.0099
-0.0627
-0.0422
 0.0102
-0.0310
 0.0050
-0.0806
 0.1235
-0.0786
-0.1168
-0.1148
 0.0717
-0.1048
 0.0509
 0.0219
 0.0902
-0.0821
-0.0005
 0.0549
-0.0563
-0.0460
-0.0904
-0.0209
 0.0030
-0.1225
-0.1071
-0.0584
-0.0711
-0.0749
-0.1088
-0.0597
-0.0829
 0.0858
-0.0987
-0.0564
-0.0063
 0.0432
-0.1095
-0.0563
 0.0691
-0.0815
-0.0858
 0.1200
 0.0459
 0.0008
 0.0818
-0.0996
-0.0737
-0.0613
-0.0190
[torch.FloatTensor of size 256]

PPP 
 0.0130
-0.0655
 0.0321
-0.0441
 0.0407
 0.0434
-0.0885
 0.1136
-0.0390
 0.0391
-0.0185
 0.1143
 0.0910
 0.0787
 0.1237
 0.0194
 0.1165
 0.0155
-0.0504
 0.0776
-0.0269
 0.0218
-0.0945
-0.0426
 0.0947
-0.0057
 0.1128
 0.0760
-0.0732
-0.0685
-0.0252
 0.0184
 0.0505
 0.0759
 0.0615
-0.0737
 0.0955
-0.0121
-0.0377
-0.0322
-0.1096
 0.0560
-0.0542
 0.0561
 0.0817
-0.1046
-0.1038
 0.0840
 0.0799
-0.0957
-0.0016
 0.0730
 0.0618
 0.0825
 0.0690
-0.0078
-0.1246
 0.0268
-0.0774
 0.0724
-0.0090
 0.0527
 0.0685
 0.0065
 0.1016
 0.0774
-0.0896
-0.1083
-0.0638
 0.0117
 0.0420
-0.0266
-0.1220
 0.0789
 0.1214
-0.1015
-0.0909
-0.0033
 0.0222
 0.0632
-0.0497
 0.1060
-0.0510
-0.0921
 0.0712
 0.0647
 0.0967
 0.0060
-0.0525
 0.1039
 0.0658
-0.0608
 0.0169
 0.0928
-0.0088
-0.0515
 0.1121
 0.0269
-0.0597
 0.0628
-0.0472
-0.1149
 0.0278
-0.0011
-0.1209
-0.0417
-0.0575
-0.1082
-0.0024
-0.0415
 0.0768
-0.0113
-0.0656
-0.1064
 0.0836
-0.0422
 0.0870
-0.1213
-0.1221
-0.0013
-0.0250
 0.0287
 0.0259
 0.1054
-0.0570
 0.0618
-0.0923
-0.0611
 0.0055
 0.0844
 0.0405
 0.1082
-0.0302
-0.1106
-0.0838
 0.0420
 0.0394
 0.1039
 0.0928
-0.1081
 0.1234
-0.0382
-0.0146
 0.0087
-0.1011
-0.0149
 0.0597
 0.0590
-0.0194
-0.0813
-0.0690
 0.0264
-0.1082
-0.0783
 0.0951
 0.1159
-0.0691
 0.0259
-0.0214
 0.1139
-0.0472
 0.0963
 0.0718
 0.1083
-0.1242
 0.0716
-0.0109
 0.0272
 0.1071
-0.1237
 0.0692
-0.0022
 0.0654
 0.1097
 0.0385
 0.0353
-0.0804
 0.0428
 0.0702
-0.1195
 0.0169
-0.0206
 0.1065
 0.0441
 0.0651
-0.0746
 0.0194
-0.0477
 0.0950
-0.0569
-0.0991
 0.0898
-0.0652
 0.0683
 0.1220
-0.0222
-0.0751
 0.0174
 0.0994
 0.0596
-0.1138
 0.0801
-0.0527
 0.0947
 0.0996
 0.0951
-0.0851
-0.0969
-0.0364
-0.0450
-0.0039
 0.0870
-0.1237
-0.1074
 0.0992
 0.0800
-0.0711
 0.0041
 0.0270
-0.0486
-0.0652
-0.0523
-0.0862
-0.0883
-0.1182
-0.0350
-0.1132
 0.0665
-0.0439
 0.0392
 0.0400
 0.0344
-0.1176
-0.0682
-0.1236
 0.0208
-0.1139
 0.0633
-0.1106
 0.0126
 0.0185
-0.0219
 0.1117
 0.0977
 0.0860
 0.0608
 0.0103
 0.0771
-0.0751
 0.0909
 0.0020
-0.0930
 0.0830
-0.0403
-0.0516
 0.0852
[torch.FloatTensor of size 256]

PPP 

Columns 0 to 9 
 0.0991  0.1218 -0.0816  0.0220  0.1029  0.0342 -0.0448 -0.0178 -0.0067  0.0853
 0.1030 -0.0817  0.0258  0.0233  0.0885 -0.1076  0.0526  0.0402  0.0480 -0.1025
 0.0224 -0.1067  0.0508 -0.0831 -0.0963  0.1152 -0.0994 -0.0305 -0.1041 -0.0282
-0.0365 -0.0857 -0.0107  0.0929 -0.0940 -0.0774 -0.0135 -0.0096  0.1087  0.1086
 0.0340 -0.0464 -0.1135  0.0084 -0.0820 -0.0957  0.0070  0.0113  0.0882  0.1237
 0.0658 -0.1047 -0.1228 -0.0985  0.0482  0.1177 -0.0759 -0.0205  0.0492 -0.0698
-0.0384  0.0334  0.0953  0.1019 -0.1207 -0.0936 -0.0745 -0.0863  0.0533  0.0637
-0.0595  0.0473 -0.0147  0.0062 -0.0191 -0.1011 -0.0289 -0.0175 -0.0966 -0.0236
 0.0033  0.0701  0.0546  0.0245 -0.0388 -0.0780  0.1232  0.0122 -0.0397 -0.0912
-0.1052 -0.0875 -0.0197  0.0015  0.1021 -0.0661 -0.0445  0.0846 -0.0606 -0.0982

Columns 10 to 19 
 0.1033 -0.0640  0.0401  0.0702 -0.0747 -0.0222 -0.0202 -0.1072  0.0767  0.0377
 0.0887  0.1194  0.1097  0.0148 -0.0138  0.0688  0.0077  0.1012  0.0860  0.0938
-0.0802 -0.0107  0.1062 -0.0412 -0.0003 -0.0302  0.0076 -0.0905  0.0395  0.0955
-0.0888 -0.1035  0.0805  0.0047 -0.0107  0.1076  0.0193 -0.0615 -0.0366  0.0952
-0.0148  0.1075 -0.0537 -0.0461 -0.0562  0.0190 -0.1205 -0.0974 -0.1083 -0.0353
-0.0527  0.1049 -0.0480  0.0007  0.0755 -0.0399  0.0567  0.0688  0.0719 -0.0474
 0.0052 -0.0320  0.0903 -0.0895  0.0861 -0.1100 -0.0788 -0.0094 -0.0595  0.0111
 0.0535 -0.0790 -0.0736 -0.0512  0.0414  0.0372 -0.0638 -0.1041 -0.0484 -0.0755
 0.1205 -0.0672  0.1016  0.0827  0.0972 -0.0551 -0.0410 -0.0551 -0.1206 -0.0395
-0.0214  0.0026 -0.0185  0.0001  0.0064  0.0982  0.0946  0.0116 -0.0024 -0.1074

Columns 20 to 29 
 0.0014 -0.0417  0.0009  0.0854  0.0269 -0.0232  0.0012  0.0069  0.1210 -0.0919
-0.0958 -0.1185 -0.1184  0.0191  0.0536 -0.0257  0.0315 -0.0092  0.1055 -0.1166
 0.0894 -0.0709  0.0922 -0.0424  0.0420 -0.0950 -0.0118 -0.0910 -0.1123  0.0984
-0.0553  0.0978  0.0158 -0.0619  0.0885 -0.0976  0.1039 -0.0054 -0.0926  0.0064
 0.1147 -0.0009 -0.0362 -0.0879 -0.0277 -0.1015 -0.1144 -0.0243 -0.1179  0.0933
-0.0904 -0.1183  0.0636 -0.0606  0.0001 -0.0374 -0.0823 -0.0881 -0.0811 -0.0672
 0.0241 -0.0959  0.0423 -0.0978 -0.0285  0.0123  0.0488  0.0487  0.0176  0.0173
 0.1008  0.0326 -0.0710 -0.1112 -0.0287 -0.0300 -0.0440 -0.0343 -0.0450 -0.1118
 0.1113 -0.0555  0.0969 -0.0204 -0.0316 -0.0028 -0.0019  0.0290 -0.0231  0.0070
-0.0039 -0.0672 -0.0438  0.0368  0.0553 -0.0499  0.0267 -0.0649  0.0019  0.0879

Columns 30 to 39 
 0.1117 -0.0552  0.0605  0.0743  0.0197 -0.0904  0.0005  0.0353 -0.0751 -0.0130
 0.0750 -0.1095  0.0277  0.1156  0.0949 -0.0796  0.1044  0.0500  0.1119  0.0033
-0.1121  0.0314  0.0501  0.0035 -0.1149  0.0623  0.0100 -0.0163  0.1058  0.0865
 0.0800 -0.0530 -0.0353  0.0779  0.1238 -0.0200 -0.0272  0.0986  0.0196 -0.0383
-0.0122 -0.1203  0.0466 -0.0569 -0.1043 -0.0704  0.1004  0.0055  0.0543 -0.0131
-0.0977 -0.0751  0.0328  0.0662 -0.0501  0.1024  0.1224 -0.0401  0.0107  0.0433
 0.0638 -0.1180 -0.0250 -0.1239  0.0566  0.0193 -0.0407 -0.0628  0.0466 -0.0568
 0.0265 -0.1144 -0.0753  0.1054 -0.0994  0.1162  0.0292  0.0838 -0.0420 -0.0506
-0.0177  0.0262 -0.0189 -0.0819 -0.0847 -0.0090 -0.0930  0.1133  0.0611 -0.0546
 0.0987 -0.0040 -0.0567 -0.0284  0.0951 -0.0739  0.0193 -0.0317 -0.0896  0.0663

Columns 40 to 49 
 0.0285  0.0341  0.1245 -0.0614 -0.0078 -0.0584 -0.0105  0.0094  0.0422 -0.0227
 0.0398  0.1004 -0.0884  0.0318 -0.0911 -0.1213 -0.0907 -0.0738 -0.0523 -0.0317
-0.1230  0.0846 -0.0740 -0.0878  0.0250  0.0375 -0.0831  0.1182 -0.0754 -0.0871
-0.0256  0.0675 -0.0249  0.0952 -0.1188 -0.0273  0.0934  0.1209  0.0765  0.0063
 0.0708  0.0393  0.0189  0.0350 -0.0329  0.1113  0.0110 -0.0083 -0.1152 -0.0735
 0.0585  0.0925  0.0616  0.0478  0.0957  0.1038  0.0545 -0.0227 -0.1126  0.0958
 0.1080 -0.1215  0.0274  0.0803 -0.1214  0.0364  0.0985 -0.0505  0.0941 -0.0675
-0.0153  0.1246 -0.0902  0.0092  0.1193 -0.1020 -0.0869  0.0396  0.1078  0.0155
 0.1243  0.0651 -0.0685 -0.0275 -0.0058  0.0416 -0.0851  0.0398  0.0317 -0.0656
-0.0128  0.0311 -0.0837 -0.0885 -0.0965  0.0931 -0.0942 -0.0342  0.0851  0.0435

Columns 50 to 59 
-0.0706  0.0740  0.0403  0.0486  0.0804  0.1016  0.0948  0.0042 -0.0204 -0.1151
 0.1095  0.0921 -0.1028  0.0282  0.0878  0.0996  0.1205 -0.0796 -0.0634 -0.1172
 0.1047 -0.0863  0.0562  0.0295  0.0177 -0.0250  0.0261  0.1133  0.0844  0.0866
-0.0407  0.0486 -0.1202 -0.1043  0.0989  0.0932  0.0133  0.0651 -0.1158 -0.0456
-0.1219  0.0920  0.0697  0.0927  0.1020  0.0391  0.0309  0.0199  0.0844  0.0428
-0.0501  0.0589  0.0111 -0.0826  0.0056 -0.0369 -0.0911  0.1175 -0.0292  0.0318
 0.0445  0.1137  0.1123 -0.0716  0.0885 -0.0383  0.0276  0.0571  0.0976  0.0298
-0.1082 -0.1132 -0.0977 -0.0630  0.1066  0.0418  0.0862 -0.0329 -0.0949 -0.1048
 0.0947  0.0587 -0.0304  0.0770 -0.0187  0.0003 -0.0628 -0.1068  0.1023  0.0669
-0.0424 -0.0686 -0.0745 -0.0949 -0.0700  0.1227 -0.0021 -0.1125 -0.1001  0.0545

Columns 60 to 63 
 0.0592 -0.0805 -0.0735 -0.0953
 0.0493 -0.0285  0.0179  0.0019
 0.0548  0.0819 -0.1057  0.0855
 0.0880 -0.0224  0.0091  0.0845
 0.0501 -0.0397 -0.0922  0.1050
 0.0109 -0.1045  0.0098 -0.0755
 0.1079  0.0461  0.0320 -0.0830
 0.0902  0.0743 -0.0809 -0.0330
-0.0153  0.0420  0.0624 -0.1119
-0.0138 -0.0618  0.1001  0.0437
[torch.FloatTensor of size 10x64]

PPP 
 0.0109
-0.0778
-0.0501
 0.0163
 0.0763
-0.0792
 0.1141
-0.0127
 0.0162
 0.0808
[torch.FloatTensor of size 10]

None

 

关于pytorch中LSTM的可以再这里查看pytorch之LSTM

我打印出Lstm的参数,并将它们结合pytorch的官方文档pytorch之LSTM,发现其实LSTM的这些参数都是Variables,注意到这个例子里的w和b也不只有一对,而是有两对,因为LSTM的num_layers=2,当这个值为3时就会有3对,由这里我受到启发,在改变sru的layer后,也发生了变化。由此我得出结论循环神经网络并不是只有一个神经单元,而是可以有多个,之前我一直以为只有一个。

而sru中的参数也是以Variable的形式存在与整个模型中,可以被更新。

posted @ 2017-12-17 16:00  深度学习1  阅读(1880)  评论(0编辑  收藏  举报