[bzoj4569] [loj#2014] [Scoi2016] 萌萌哒

Description

一个长度为 \(n\) 的大数,用 \(S1S2S3...Sn\) 表示,其中 \(Si\) 表示数的第 \(i\) 位, \(S1\) 是数的最高位,告诉你一些限制条件,每个条件表示为四个数,\(l1\)\(r1\)\(l2\)\(r2\),即两个长度相同的区间,表示子串 \(Sl1\) \(Sl1+1\) \(Sl1+2\) \(...\) \(Sr1\)\(Sl2\) \(Sl2+1\) \(Sl2+2\) \(...\) \(Sr2\) 完全相同。比如 \(n=6\) 时,某限制条件 \(l1=1\)\(r1=3\)\(l2=4\)\(r2=6\) ,那么123123,351351均满足条件,但是12012,131141不满足条件,前者数的长度不为6,后者第二位与第五位不同。问满足以上所有条件的数有多少个。

Input

第一行两个数 \(n\)\(m\) ,分别表示大数的长度,以及限制条件的个数。接下来 \(m\) 行,对于第 \(i\) 行,有 4 个数 \(li1\)\(ri1\)\(li2\)\(ri2\) ,分别表示该限制条件对应的两个区间。
\(1 \leq n \leq 10^5\)\(1 \leq m \leq 10^5\)\(1 \leq li1,ri1,li2,ri2 \leq n\);并且保证 \(ri1-li1=ri2-li2\)

Output

一个数,表示满足所有条件且长度为 \(n\) 的大数的个数,答案可能很大,因此输出答案模 \(10^9+7\) 的结果即可。

Sample Input

4 2

1 2 3 4

3 3 3 3

Sample Output

90


想法

一个显然的想法是,暴力用并查集把一样的位置并起来
最后查询有多少个并查集,设有 \(x\) 个,则最终答案是 \(9 \times 10^{n-1}\) (最高位不能为零)
但显然超时。

考虑怎么优化连边——倍增。
注意到上面连的边数过多的原因是有许多无用边(比如可能有许多边的作用都是让 \(u\)\(v\) 连起来;或者一个大小为 \(n\) 的并查集中有用边只有 \(n-1\) 条,却在内部连了很多条边)
那有一种极巧妙的做法是加一些新点代表一个个长度为 \(2^i\) 的区间,有点类似 \(ST\)
每次合并把 \([l,r]\) 拆成 \(O(logn)\) 段区间,把代表那些区间的点对应并起来
最后下放。如原本代表 \([l1,r1]\)\([l2,r2]\) 的点在一个并查集中,那么将 \([l1,(l1+r1)>>1]\)\([l2,(l2+r2)>>1]\) 并起来,将 \([(l1+r1)>>1+1,r1]\)\([(l2+r2)>>1+1,r2]\) 并起来即可
下放的总复杂度是 \(O(nlogn)\)
下放到最后就是代表长度为1的区间的点了,找一下并查集个数就可以了。
总复杂度 \(O(logn)\)

太巧妙了!神仙方法 \(orz\)


代码

#include<cstdio>
#include<iostream>
#include<algorithm>

#define P 1000000007

using namespace std;

int read(){
	int x=0;
	char ch=getchar();
	while(!isdigit(ch)) ch=getchar();
	while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
	return x;
}

const int N = 100005;

int n,m;
int f[N][18],cnt,ch[18*N][2],fa[N*18];

int getfa(int x) { return x==fa[x] ? x : fa[x]=getfa(fa[x]) ; }
void unit(int x,int y){
	x=getfa(x); y=getfa(y);
	if(x!=y) fa[x]=y; 
}

int Pow_mod(int x,int y){
	int ret=1;
	while(y){
		if(y&1) ret=1ll*ret*x%P;
		x=1ll*x*x%P;
		y>>=1;
	}
	return ret;
}

int main()
{
	n=read(); m=read();
	int l1,l2,r1,r2;
	
	for(int j=0;j<18;j++){
		int l=(1<<j);
		for(int i=1;i+l-1<=n;i++){
			f[i][j]=++cnt;
			if(j==0) continue;
			ch[cnt][0]=f[i][j-1]; ch[cnt][1]=f[i+(l>>1)][j-1]; 
		}
	}
	
	for(int i=1;i<=cnt;i++) fa[i]=i;
	while(m--){
		l1=read(); r1=read(); l2=read(); r2=read();
		for(int i=17;i>=0;i--){
			if(l1+(1<<i)-1>r1) continue;
			unit(f[l1][i],f[l2][i]);
			l1+=(1<<i); l2+=(1<<i);
		}
	}
	
	for(int i=cnt;i>n;i--)
		if(fa[i]!=i){
			unit(ch[fa[i]][1],ch[i][1]);
			unit(ch[fa[i]][0],ch[i][0]);
		}
	
	int ans=0;
	for(int i=1;i<=n;i++) if(fa[i]==i) ans++;
	printf("%d\n",1ll*9*Pow_mod(10,ans-1)%P);
	
	return 0;
}
posted @ 2019-08-29 21:06  秋千旁的蜂蝶~  阅读(130)  评论(0编辑  收藏  举报