USACO 2.2 Subset Sums 【经典的方案DP+必要的转化】

题目在这里:https://www.luogu.org/problem/show?pid=1466#sub

1、把一个连续正整数集合平分,假设该正整数集合和为s,那么平分后的两个集合和均为s/2,因此我们首先把s是奇数的n排除掉
2、接着,我们发现:平分集合方案数======》用n个数凑s/2的方案数======》DP
3、若用f[i][j]表示用前i 个数凑j 的方案,则 f[i][j]=f[i-1][j]+f[i-1][j-i] (1<=i<=n,0<=j<=s/2)
4、当然,二维可以压成一维,代码如下:
 
二维
-------------------------------------------------------

 

 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n;
long long f[50][5050]={0};//how many methods are there to make up j with the first i numbers

int main()
{
    freopen("subset.in","r",stdin);
    freopen("subset.out","w",stdout);
    cin>>n;
    if(n==0||n*(n+1)%4!=0)
    {
        cout<<"0"<<endl;
        return 0;
    }
    int s=n*(n+1)/2;
    s/=2;
    f[1][1]=1;
    f[1][0]=1;
    for(int i=2;i<=n;i++)
        for(int j=s;j>=0;j--)//分两种情况:i能拼起j(取i或不取), 或不能(只能不取) 
            if(j>=i)
                f[i][j]=f[i-1][j-i]+f[i-1][j];
            else
                f[i][j]=f[i-1][j];
    cout<<f[n][s]/2<<endl;
    return 0;
}
View Code
一维
------------------------------------------------------------------
 
 
#include<cstdio> 
int n,s; 
long long f[400]={0}; 
int main()
{     
   scanf("%d",&n);    
   s=n*(n+1)/2;     
   if (s&1)
   {         
    printf("0");         
    return 0;    
   }    
  s/=2;    
  f[0]=1;     
  for(int i=1;i<=n;i++)         
   for(int j=s;j>=i;j--)            
    f[j]+=f[j-i];     
  printf("%d\n",(long long)f[s]/2); 
  return 0;
}
View Code

 

posted @ 2017-07-19 15:40  Captain_fcj  阅读(137)  评论(0编辑  收藏  举报