POJ 2506 Tiling
这题是一个标准递推,挺简单的,就是因为有大数操作写个博客记录一下。
递推公式是a[n]=a[n-1]+2*a[n-2]。
下面是代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <limits> #include <cstdlib> using namespace std; const int MAXD = 1000, DIG = 9, BASE = 1000000000; const unsigned long long BOUND = numeric_limits <unsigned long long> :: max () - (unsigned long long) BASE * BASE; class bignum { private: int digits[MAXD]; int D; public: friend ostream &operator<<(ostream &out,bignum &c); inline void trim() { while(D > 1 && digits[D-1] == 0 ) D--; } inline void dealint(long long x) { memset(digits,0,sizeof(digits)); D = 0; do { digits[D++] = x % BASE; x /= BASE; } while(x > 0); } inline void dealstr(char *s) { memset(digits,0,sizeof(digits)); int len = strlen(s),first = (len + DIG -1)%DIG + 1; D = (len+DIG-1)/DIG; for(int i = 0; i < first; i++) digits[D-1] = digits[D-1]*10 + s[i] - '0'; for(int i = first, d = D-2; i < len; i+=DIG,d--) for(int j = i; j < i+DIG; j++) digits[d] = digits[d]*10 + s[j]-'0'; trim(); } inline char *print() { trim(); char *cdigits = new char[DIG * D + 1]; int pos = 0,d = digits[D-1]; do { cdigits[pos++] = d % 10 + '0'; d/=10; } while(d > 0); reverse(cdigits,cdigits+pos); for(int i = D - 2; i >= 0; i--,pos += DIG) for(int j = DIG-1,t = digits[i]; j >= 0; j--) { cdigits[pos+j] = t%10 + '0'; t /= 10; } cdigits[pos] = '\0'; return cdigits; } bignum() { dealint(0); } bignum(long long x) { dealint(x); } bignum(int x) { dealint(x); } bignum(char *s) { dealstr(s); } inline bool operator < (const bignum &o) const { if(D != o.D) return D < o.D; for(int i = D-1; i>=0; i--) if(digits[i] != o.digits[i]) return digits[i] < o.digits[i]; return false; //equal } bool operator > (const bignum & o)const { return o < *this; } bool operator <= (const bignum & o)const { return !(o < *this); } bool operator >= (const bignum & o)const { return !(*this < o); } bool operator != (const bignum & o)const { return o < *this || *this < o; } bool operator == (const bignum & o)const { return !(o < *this) && !(*this < o); } bignum &operator++() { *this = *this + 1; return *this; } bignum operator ++(int) { bignum old = *this; ++(*this); return old; } inline bignum operator << (int p) const { bignum temp; temp.D = D + p; for (int i = 0; i < D; i++) temp.digits [i + p] = digits [i]; for (int i = 0; i < p; i++) temp.digits [i] = 0; return temp; } inline bignum operator >> (int p) const { bignum temp; temp.D = D - p; for (int i = 0; i < D - p; i++) temp.digits [i] = digits [i + p]; for (int i = D - p; i < D; i++) temp.digits [i] = 0; return temp; } bignum &operator += (const bignum &b) { *this = *this + b; return *this; } bignum &operator -= (const bignum &b) { *this = *this - b; return *this; } bignum &operator *= (const bignum &b) { *this = *this * b; return *this; } bignum &operator /= (const bignum &b) { *this = *this / b; return *this; } bignum &operator %= (const bignum &b) { *this = *this % b; return *this; } inline bignum operator + (const bignum &o) const { bignum sum = o; int carry = 0; for (sum.D = 0; sum.D < D || carry > 0; sum.D++) { sum.digits [sum.D] += (sum.D < D ? digits [sum.D] : 0) + carry; if (sum.digits [sum.D] >= BASE) { sum.digits [sum.D] -= BASE; carry = 1; } else carry = 0; } sum.D = max (sum.D, o.D); sum.trim (); return sum; } inline bignum operator - (const bignum &o) const { bignum diff = *this; for (int i = 0, carry = 0; i < o.D || carry > 0; i++) { diff.digits [i] -= (i < o.D ? o.digits [i] : 0) + carry; if (diff.digits [i] < 0) { diff.digits [i] += BASE; carry = 1; } else carry = 0; } diff.trim (); return diff; } inline bignum operator * (const bignum &o) const { bignum prod = 0; unsigned long long sum = 0, carry = 0; for (prod.D = 0; prod.D < D + o.D - 1 || carry > 0; prod.D++) { sum = carry % BASE; carry /= BASE; for (int j = max (prod.D - o.D + 1, 0); j <= min (D - 1, prod.D); j++) { sum += (unsigned long long) digits [j] * o.digits [prod.D - j]; if (sum >= BOUND) { carry += sum / BASE; sum %= BASE; } } carry += sum / BASE; prod.digits [prod.D] = sum % BASE; } prod.trim (); return prod; } inline bignum range (int a, int b) const { bignum temp = 0; temp.D = b - a; for (int i = 0; i < temp.D; i++) temp.digits [i] = digits [i + a]; return temp; } inline double double_div (const bignum &o) const { double val = 0, oval = 0; int num = 0, onum = 0; for (int i = D - 1; i >= max (D - 3, 0); i--, num++) val = val * BASE + digits [i]; for (int i = o.D - 1; i >= max (o.D - 3, 0); i--, onum++) oval = oval * BASE + o.digits [i]; return val / oval * (D - num > o.D - onum ? BASE : 1); } inline pair <bignum, bignum> divmod (const bignum &o) const { bignum quot = 0, rem = *this, temp; for (int i = D - o.D; i >= 0; i--) { temp = rem.range (i, rem.D); int div = (int) temp.double_div (o); bignum mult = o * div; while (div > 0 && temp < mult) { mult = mult - o; div--; } while (div + 1 < BASE && !(temp < mult + o)) { mult = mult + o; div++; } rem = rem - (o * div << i); if (div > 0) { quot.digits [i] = div; quot.D = max (quot.D, i + 1); } } quot.trim (); rem.trim (); return make_pair (quot, rem); } inline bignum operator / (const bignum &o) const { return divmod (o).first; } inline bignum operator % (const bignum &o) const { return divmod (o).second; } inline bignum power (int exp) const { bignum p = 1, temp = *this; while (exp > 0) { if (exp & 1) p = p * temp; if (exp > 1) temp = temp * temp; exp >>= 1; } return p; } inline bignum factorial() const { bignum ans = 1, num = *this; if (num == 0 || num == 1) return ans; while (!(num < 0 || num == 0)) { ans = ans * num; num = num - 1; } return ans; } }; ostream &operator<<(ostream &out, bignum &c) { out<<c.print(); return out; } istream &operator >> (istream &in,bignum &c) { char s[10000]; in>>s; c = s; return in; } bignum gcd(bignum a,bignum b) { return b==0?a:gcd(b,a%b); } int main() { bignum a[255]; a[0]=1; a[1]=1; a[2]=3; int n,i; for(i=3;i<=250;i++) { a[i]=a[i-1]+a[i-2]+a[i-2]; } while(cin>>n) { cout<<a[n]<<endl; } }
今天新加入的Java代码:
import java.math.*; import java.util.*; public class Main { public static void main(String[] args) { // TODO Auto-generated method stub /*sss*/ BigInteger [] a=new BigInteger[255]; //大数数组 a[0]=BigInteger.ONE; //初始化 a[1]=BigInteger.ONE; a[2]=a[1].add(a[0].add(a[0])); for(int i=3;i<=250;i++) { a[i]=a[i-1].add(a[i-2].add(a[i-2])); } Scanner cin = new Scanner(System.in); //输入打开 while(cin.hasNext())//判断是否文件结束 { int n=cin.nextInt(); System.out.println(a[n]); //输出 } cin .close();//输入关闭 } }