opencv-sobel粗测边缘

sobel算子是一种常用的边缘检测算子,是一阶的梯度算法。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。Sobel卷积因子为:

 

其中,Gx是横向的算子,Gy是纵向的算子。
原图像记为f,则
GX = Gx*f
GY = Gy*f
Gx =-1*f(x-1, y-1) + 0*f(x,y-1) + 1*f(x+1,y-1)+(-2)*f(x-1,y) + 0*f(x,y)+2*f(x+1,y)+(-1)*f(x-1,y+1) + 0*f(x,y+1) + 1*f(x+1,y+1)
Gy =1* f(x-1, y-1) + 2*f(x,y-1)+ 1*f(x+1,y-1)+0*f(x-1,y) 0*f(x,y) + 0*f(x+1,y)+(-1)*f(x-1,y+1) + (-2)*f(x,y+1) + (-1)*f(x+1, y+1)

其中f(a,b), 表示图像(a,b)点的灰度值
GX,GY代表利用模板对原图像卷积的结果。
对于原图像中的每一个像素,在3*3的模板中进行上述的卷积,得到GX、GY,则最后该像素的灰度值近似为:
G = |GX|+|GY|
如果G大于某一个阈值,则认定该点为一个边缘点。
上述的处理可以同时进行两个方向的处理,当需要突出图像某一个方向的边缘信息时,也可以只进行其中一个方向的处理

其实在边缘检测中还会用到很多算子,如普利维特算子(Prewitt operate);罗伯茨交叉边缘检测(Roberts Cross operator);拉普拉斯算子等等

 7.png

 

 

#include<opencv2/opencv.hpp>
#include<iostream>
#include  <vector>


int main(int argc, char** argv) {

    cv::Mat src = cv::imread("D:/bb/tu/7.png");
    cv::Mat dstx = src.clone();
    cv::Sobel(src, dstx, -1, 0, 1);//计算x方向的边缘
    /*
    参数1:src:输入的原图像,Mat类型
    参数2:dst:输出的边缘检测结果图像,Mat型,大小与原图像相同
    参数3:int ddepth:输出图像的深度,针对不同的输入图像,输出目标图像有不同的深度,具体组合如下:
            若src.depth() = CV_8U, 取ddepth =-1/CV_16S/CV_32F/CV_64F
            若src.depth() = CV_16U/CV_16S, 取ddepth =-1/CV_32F/CV_64F
            若src.depth() = CV_32F, 取ddepth =-1/CV_32F/CV_64F
            若src.depth() = CV_64F, 取ddepth = -1/CV_64F
            注:ddepth =-1时,代表输出图像与输入图像相同的深度
    参数4:int类型dx,x 方向上的差分阶数,1或0;
    参数5:int类型dy,y 方向上的差分阶数,1或0
            dx=1,dy=0,表示计算X方向的导数,检测出的是垂直方向上的边缘
            dx=0,dy=1,表示计算Y方向的导数,检测出的是水平方向上的边缘
            【注意:每次计算只能计算一个方向】
    参数6:int ksize:为进行边缘检测时的模板大小为ksize*ksize,取值为1、3、5和7,其中默认值为3。特殊情况:ksize=1时,采用的模板为3*1或1*3
            当ksize=3时,Sobel内核可能产生比较明显的误差,此时,可以使用 Scharr 函数,该函数仅作用于大小为3的内核。具有跟sobel一样的速度,但结果更精确
    计算结果:如果src是灰度图,计算出的边缘值为255,非边缘值为0
              如果src是彩色图,计算出的边缘值为非0值,非边缘值为0--【个人感觉彩色图比灰度图更精准】
    */

    cv::Mat dsty = src.clone();
    cv::Sobel(src, dsty, -1, 1, 0);//计算y方向的边缘

    cv::Mat dst1 = src.clone();
    dst1 = dstx | dsty;  //x和y方向的边缘合并

    cv::Mat dst2 = src.clone();
    addWeighted(dstx, 0.5, dsty, 0.5, 0, dst2);//两图合并


    cv::namedWindow("原图",0);
    cv::imshow("原图", src);

    cv::imshow("dstx", dstx);
    cv::imshow("dsty", dsty);
    cv::imshow("dst1", dst1);
    cv::imshow("dst2", dst2);

    cv::waitKey(0);
    return 0;
}

 

 

 

 

 

 

 

posted @ 2021-12-01 12:18  天子骄龙  阅读(192)  评论(0编辑  收藏  举报