GDCPC2021热身 - Calculation(数学)

题目

Consider n's prime factorization is \(n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}\), and \(\lambda(n)=(-1)^{a_1+a_2+...+a_k}\).

Calculate the value of \(\sum_{i=1}^{n}{\sum_{j=1}^{n}{\sum_{k=1}^{n}{\lambda(i)*\lambda(j)*[i|j \ and \ j|k]}}}\), mod 998244353.

题解

交换一下累加次序可得

\[\sum_{j=1}^{n}{\sum_{k=1}^{n}{\sum_{i=1}^{n}{\lambda(i)*\lambda(j)*[i|j ]*[j|k]}}} \]

重新排列一下各项

\[\sum_{j=1}^{n}{\sum_{k=1}^{n}{\lambda(j)*[j|k]*(\sum_{i=1}^{n}{\lambda(i)*[i|j]})}} \]

令括号内的式子为函数g

\[g(j)=\sum_{i=1}^{n}{\lambda(i)*[i|j]}=\sum\limits_{i|j}{\lambda(i)} \]

可得答案即为

\[\sum\limits_{j=1}^{n}{\lfloor\frac{n}{j}\rfloor*\lambda(j)*g(j)} \]

观察函数g,可以发现其就是求\(j\)的关于\(\lambda\)的约数和。约数是成对出现的,总约数个数为\(\prod\limits_{i=1}^{k}{(a_i+1)}\)。只有\(j\)的约数个数为奇数时,函数g的值才为1,否则互相抵消结果为0。当约数个数为奇数时,说明\(j\)是完全平方数。

可得答案即为

\[\sum\limits_{j=1}^{\lfloor\sqrt{n}\rfloor}{\lfloor\frac{n}{j^2}\rfloor} \]

#include<iostream>
using namespace std;
const int N = 1e5 + 10;
const int M = 998244353;
typedef long long ll;

int main() {
	ll n;
	ll ans = 0;
	cin >> n;
	for(ll i = 1; i * i <= n; i++) {
		ans += n / (i * i);
		ans %= M;
	}	
	cout << ans << endl;
}
posted @ 2021-07-05 12:28  limil  阅读(88)  评论(0编辑  收藏  举报