android消息处理源码分析

一、简介
消息处理机制主要涉及到这几个类:
1.Looper
2.MessageQueue
3.Message
4.Handler

 

二、源码分析

Looper.class的关键源码:

 

//保存Looper对象,在android中每创建一个消息队列,就有一个并且是唯一一个与之对应的Looper对象 
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
//主线程的Looper
private static Looper sMainLooper;
//消息队列
final MessageQueue mQueue;
final Thread mThread;

//子线程中通过调用该方法来创建消息队列
public static void prepare() {
    prepare(true);
}

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}


//主线程调用该方法来创建消息队列
public static void prepareMainLooper() {
    prepare(false);
    synchronized (Looper.class) {
        if (sMainLooper != null) {
            throw new IllegalStateException("The main Looper has already been prepared.");
        }
        sMainLooper = myLooper();
    }
}

//实例化Looper,创建消息队列,获取当前线程
private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}

//调用loop方法开启消息循环 
public static void loop() { 
    //获取当前的Looper对象,若为null,抛出异常 
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() 
            wasn't called on this thread."); 
     } 
    //获取当前的消息队列,进入循环 
    final MessageQueue queue = me.mQueue; 
    for (;;) { 
        //调用next()方法从消息队列中获取消息,如果为null,结束循环;否则,继续执行(有可能会阻塞) 
        Message msg = queue.next(); 
        if (msg == null) { 
            return; 
        } 
        ...... 
        try { 
            //调用handler的dispatchMessage(msg)分发消息  
            msg.target.dispatchMessage(msg); 
        } finally {
        ...... 
        } 
        //回收消息资源  
        msg.recycleUnchecked(); 
    }
}

//消息循环退出
public void quit() {
    mQueue.quit(false);
}

public void quitSafely() {
    mQueue.quit(true);
}

 

消息循环退出过程

从上面可以看到loop()方法是一个死循环,只有当MessageQueue的next()方法返回null时才会结束循环。那么MessageQueue的next()方法何时为null呢?

在Looper类中我们看到了两个结束的方法quit()和quitSalely()。
两者的区别就是quit()方法直接结束循环,处理掉MessageQueue中所有的消息。
quitSafely()在处理完消息队列中的剩余的非延时消息(延时消息(延迟发送的消息)直接回收)时才退出。这两个方法都调用了MessageQueue的quit()方法

 

MessageQueue.class 的关键源码:

MessageQueue中最重要的就是两个方法:
1.enqueueMessage()向队列中插入消息
2.next() 从队列中取出消息

/*
*MessageQueue中enqueueMessage方法的目的有两个:
*1.插入消息到消息队列
*2.唤醒Looper中等待的线程(如果是即时消息并且线程是阻塞状态)
*/
boolean enqueueMessage(Message msg, long when) {
    //发送该消息的handler为null,抛出异常
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    //此消息正在被使用
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        //此消息队列已经被放弃了
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            msg.recycle();
            return false;
        }
        msg.markInUse();
        msg.when = when;
        //消息队列的第一个元素,MessageQueue中的成员变量mMessages指向的就是该链表的头部元素。
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            //如果此队列中头部元素是null(空的队列,一般是第一次),或者此消息不是延时的消息,则此消息需要被立即处理,
            //将该消息作为新的头部,并将此消息的next指向旧的头部。如果是阻塞状态则需要唤醒。
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            //如果此消息是延时的消息,则将其添加到队列中,
            //原理就是链表的添加新元素,按照时间顺序来插入的,这样就得到一条有序的延时消息链表  
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p;
            prev.next = msg;
        }
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}

Message next() {
    //与native方法相关,当mPtr为0时返回null,退出消息循环
    final long ptr = mPtr; 
    if (ptr == 0) {
        return null;
    }

    int pendingIdleHandlerCount = -1;
    //0不进入睡眠,-1进入睡眠 
    int nextPollTimeoutMillis = 0;  
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            //处理当前线程中待处理的Binder进程间通信请求
            Binder.flushPendingCommands();  
        }
        //native方法,nextPollTimeoutMillis为-1时进入睡眠状态
        //阻塞方法,主要是通过native层的epoll监听文件描述符的写入事件来实现的。
        //如果nextPollTimeoutMillis=-1,一直阻塞不会超时。
        //如果nextPollTimeoutMillis=0,不会阻塞,立即返回。
        //如果nextPollTimeoutMillis>0,最长阻塞nextPollTimeoutMillis毫秒(超时),如果期间有程序唤醒会立即返回
        nativePollOnce(ptr, nextPollTimeoutMillis); 
        synchronized (this) {
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    //正常取出消息,设置mBlocked = false代表目前没有阻塞
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.更新到睡眠状态
                nextPollTimeoutMillis = -1;
            }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
        }            
        //非睡眠状态下处理IdleHandler接口 
        for (int i = 0; i < pendingIdleHandlerCount; i++) { 
            final IdleHandler idler = mPendingIdleHandlers[i]; 
            // release the reference to the handler 
            mPendingIdleHandlers[i] = null; 
            boolean keep = false; 
            try { 
               keep = idler.queueIdle(); 
            } catch (Throwable t) { 
                Log.wtf(TAG, "IdleHandler threw exception", t); 
            } 
            if (!keep) { 
                synchronized (this) { 
                    mIdleHandlers.remove(idler); 
                } 
            } 
        } 
        pendingIdleHandlerCount = 0; 
        nextPollTimeoutMillis = 0;
    }        
}

 

Handler.class源码分析:

/*
*通过handler类向线程的消息队列发送消息,
*每个Handler对象中都有一个Looper对象和MessageQueue对象
*/
public Handler(Callback callback, boolean async) {
    if (FIND_POTENTIAL_LEAKS) {
        final Class<? extends Handler> klass = getClass();
        if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                (klass.getModifiers() & Modifier.STATIC) == 0) {
            Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                klass.getCanonicalName());
        }
    }
    //获取Looper对象
    mLooper = Looper.myLooper(); 
    if (mLooper == null) {...}
    //获取消息队列
    mQueue = mLooper.mQueue;  
    mCallback = callback;
    mAsynchronous = async;
}

/*
*多种sendMessage方法,最终都调用了同一个方法sendMessageAtTime()
*/
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    //向消息队列中添加消息
    return enqueueMessage(queue, msg, uptimeMillis); 
}
    
/*
*1.当Message中的callback不为null时,执行Message中的callback中的方法。这个callback时一个Runnable接口。
*2.当Handler中的Callback接口不为null时,执行Callback接口中的方法。
*3.直接执行Handler中的handleMessage()方法。
*/
public void dispatchMessage(Message msg) {
    // 消息Callback接口不为null,执行Callback接口
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            //Handler Callback接口不为null,执行接口方法
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        //处理消息
        handleMessage(msg); 
    }
}

 

posted @ 2019-04-13 15:46  Lilycoding  阅读(367)  评论(0编辑  收藏  举报