python opencv 实现Reinhard颜色迁移算法
Reinhard颜色迁移算法的过程很简单,流程如下,细节部分见原文,题目为color transfer between images:
- 将参考图片和目标图片转换到LAB空间下
- 得到参考图片和目标图片的均值和标准差
- 对目标图片的每一个像素值,减去目标图像均值然后乘上参考图片和目标图片标准差的比值,再加上参考图像均值
- 将目标图片转换到RGB空间
将RGB图片转换到LAB空间很重要,因为LAB空间能降低三原色之间的相关性,如果不转换,结果会有很大的不同
# -*- coding: utf-8 -*- import cv2 import numpy as np image = cv2.imread('des.jpg') image = cv2.cvtColor(image,cv2.COLOR_BGR2LAB) original = cv2.imread('src.jpg') original = cv2.cvtColor(original,cv2.COLOR_BGR2LAB) def getavgstd(image): //得到均值和标准差 avg = [] std = [] image_avg_l = np.mean(image[:,:,0]) image_std_l = np.std(image[:,:,0]) image_avg_a = np.mean(image[:,:,1]) image_std_a = np.std(image[:,:,1]) image_avg_b = np.mean(image[:,:,2]) image_std_b = np.std(image[:,:,2]) avg.append(image_avg_l) avg.append(image_avg_a) avg.append(image_avg_b) std.append(image_std_l) std.append(image_std_a) std.append(image_std_b) return (avg,std) image_avg,image_std = getavgstd(image) original_avg,original_std = getavgstd(original) height,width,channel = image.shape for i in range(0,height): for j in range(0,width): for k in range(0,channel): t = image[i,j,k] t = (t-image_avg[k])*(original_std[k]/image_std[k]) + original_avg[k] t = 0 if t<0 else t t = 255 if t>255 else t image[i,j,k] = t image = cv2.cvtColor(image,cv2.COLOR_LAB2BGR) cv2.imwrite('out.jpg',image)
结果如下: