kalor

导航

 

Exception:

Caused by: org.datanucleus.exceptions.NucleusException: Attempt to invoke the "BoneCP" plugin to create a ConnectionPool gave an error : The specified datastore driver ("com.mysql.jdbc.Driver") was not found in the CLASSPATH. Please check your CLASSPATH specification, and the name of the driver.

Solution:

1、$HIVE_HOME/conf/hive-site.xml中增加关于 hive.metastore.uris 的配置信息,如下:
<property>
  <name>hive.metastore.uris</name>
  <value>thrift://namenode1:9083</value>
  <description>IP address (or fully-qualified domain name) and port of the metastore host</description>
</property>

2、执行:$HIVE_HOME/bin/hive --service metastore,启动元数据存储服务;

3、将$HIVE_HOME/conf/hive-site.xml拷贝至$SPARK_HOME/conf/目录下;

4、启动spark-shell进行验证:$SPARK_HOME/bin/spark-shell --master namenode1:7077或spark-sql -> show databases.


Note:
1. 当在Intellij IDE中编写Spark SQL程序时(val hiveContext = new HiveContext(sc); import hiveContext.sql; sql("show databases")),打包成相应的.jar文件,并利用如下脚本将任务提交到Spark集群运行时,Spark默认采用derby进行metastore,即元数据的存储;当再次在不同目录下执行该任务时,之前创建的数据库或表数据无法获取,有点即用即删的感觉。故要想访问Hive下的元数据,首先需要将Hive目录下的配置文件中的hive-site.xml文件放到Spark目录下的配置文件中,让Spark集群执行程序时能识别进入Hive元数据的路径,然后启动上述服务(
hive --service metastore)即可访问Hive相应数据。

2.
/**
* An instance of the Spark SQL execution engine that integrates with data stored in Hive.
* Configuration for Hive is read from hive-site.xml on the classpath.
*/
class HiveContext(sc: SparkContext) extends SQLContext(sc) {

 ....................................

}

3. 

Use HiveContext instead.  It will still create a local metastore if one is not specified. However, note that the default directory is ./metastore_db, not ./metastore

 

测试程序如下:

package com.husor.Hive

import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.sql.hive.HiveContext

/* Spark SQL执行时的sql是临时的,即用即删 **/

/**
 * Created by kelvin on 2015/1/27.
 */
object Recommendation {
  def main(args: Array[String]) {

    println("Test is starting......")

    if (args.length < 1) {
      System.err.println("Usage:HDFS_OutputDir <Directory>")
      System.exit(1)
    }

    //System.setProperty("hadoop.home.dir", "d:\\winutil\\")

    val conf = new SparkConf().setAppName("Recommendation")
    val spark = new SparkContext(conf)

    val hiveContext = new HiveContext(spark)

    import hiveContext.sql

    /*sql("create database if not exists baby")
    val databases = sql("show databases")
    databases.collect.foreach(println)*/

    sql("use baby")
    /*sql("CREATE EXTERNAL TABLE if not exists origin_orders (oid string, uid INT, gmt_create INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n' LOCATION '/beibei/order'")
    sql("CREATE EXTERNAL TABLE if not exists items (iid INT, pid INT, title string, cid INT, brand INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n' LOCATION '/beibei/item'")
    sql("CREATE EXTERNAL TABLE if not exists order_item (oid string, iid INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n' LOCATION '/beibei/order_item'")
    sql("create table if not exists test_orders(oid string, uid INT, gmt_create INT)")
    sql("create table if not exists verify_orders(oid string, uid INT, gmt_create INT)")
    sql("insert OVERWRITE table test_orders select * from origin_orders where gmt_create <= 1415635200")
    sql("insert OVERWRITE table verify_orders select * from origin_orders where gmt_create > 1415635200")

    val tables = sql("show tables")
    tables.collect.foreach(println)*/

    sql("SET spark.sql.shuffle.partitions = 5")

    val olderTime = System.currentTimeMillis()

    val userOrderData = sql("select i.pid, o.uid, o.gmt_create from items i " +
                                         "join order_item oi " +
                                         "on i.iid = oi.iid     " +
                                         "join test_orders o " +
                                         "on oi.oid = o.oid")

    userOrderData.take(10).foreach(println)

    val newTime = System.currentTimeMillis()

    println("Consume Time: " + (newTime - olderTime))

    userOrderData.saveAsTextFile(args(0))
    spark.stop()

    println("Test is Succeed!!!")

  }

}

 

 
posted on 2015-01-28 15:38  kalor  阅读(3822)  评论(0编辑  收藏  举报