Exception:
Caused by: org.datanucleus.exceptions.NucleusException: Attempt to invoke the "BoneCP" plugin to create a ConnectionPool gave an error : The specified datastore driver ("com.mysql.jdbc.Driver") was not found in the CLASSPATH. Please check your CLASSPATH specification, and the name of the driver.
Solution:
1、$HIVE_HOME/conf/hive-site.xml中增加关于 hive.metastore.uris 的配置信息,如下:
<property>
<name>hive.metastore.uris</name>
<value>thrift://namenode1:9083</value>
<description>IP address (or fully-qualified domain name) and port of the metastore host</description>
</property>
2、执行:$HIVE_HOME/bin/hive --service metastore,启动元数据存储服务;
3、将$HIVE_HOME/conf/hive-site.xml拷贝至$SPARK_HOME/conf/目录下;
4、启动spark-shell进行验证:$SPARK_HOME/bin/spark-shell --master namenode1:7077或spark-sql -> show databases.
Note:
1. 当在Intellij IDE中编写Spark SQL程序时(val hiveContext = new HiveContext(sc); import hiveContext.sql; sql("show databases")),打包成相应的.jar文件,并利用如下脚本将任务提交到Spark集群运行时,Spark默认采用derby进行metastore,即元数据的存储;当再次在不同目录下执行该任务时,之前创建的数据库或表数据无法获取,有点即用即删的感觉。故要想访问Hive下的元数据,首先需要将Hive目录下的配置文件中的hive-site.xml文件放到Spark目录下的配置文件中,让Spark集群执行程序时能识别进入Hive元数据的路径,然后启动上述服务(hive --service metastore)即可访问Hive相应数据。
2.
/** * An instance of the Spark SQL execution engine that integrates with data stored in Hive. * Configuration for Hive is read from hive-site.xml on the classpath. */ class HiveContext(sc: SparkContext) extends SQLContext(sc) { .................................... }
3.
Use HiveContext instead. It will still create a local metastore if one is not specified. However, note that the default directory is ./metastore_db, not ./metastore
测试程序如下:
package com.husor.Hive import org.apache.spark.{SparkContext, SparkConf} import org.apache.spark.sql.hive.HiveContext /* Spark SQL执行时的sql是临时的,即用即删 **/ /** * Created by kelvin on 2015/1/27. */ object Recommendation { def main(args: Array[String]) { println("Test is starting......") if (args.length < 1) { System.err.println("Usage:HDFS_OutputDir <Directory>") System.exit(1) } //System.setProperty("hadoop.home.dir", "d:\\winutil\\") val conf = new SparkConf().setAppName("Recommendation") val spark = new SparkContext(conf) val hiveContext = new HiveContext(spark) import hiveContext.sql /*sql("create database if not exists baby") val databases = sql("show databases") databases.collect.foreach(println)*/ sql("use baby") /*sql("CREATE EXTERNAL TABLE if not exists origin_orders (oid string, uid INT, gmt_create INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n' LOCATION '/beibei/order'") sql("CREATE EXTERNAL TABLE if not exists items (iid INT, pid INT, title string, cid INT, brand INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n' LOCATION '/beibei/item'") sql("CREATE EXTERNAL TABLE if not exists order_item (oid string, iid INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n' LOCATION '/beibei/order_item'") sql("create table if not exists test_orders(oid string, uid INT, gmt_create INT)") sql("create table if not exists verify_orders(oid string, uid INT, gmt_create INT)") sql("insert OVERWRITE table test_orders select * from origin_orders where gmt_create <= 1415635200") sql("insert OVERWRITE table verify_orders select * from origin_orders where gmt_create > 1415635200") val tables = sql("show tables") tables.collect.foreach(println)*/ sql("SET spark.sql.shuffle.partitions = 5") val olderTime = System.currentTimeMillis() val userOrderData = sql("select i.pid, o.uid, o.gmt_create from items i " + "join order_item oi " + "on i.iid = oi.iid " + "join test_orders o " + "on oi.oid = o.oid") userOrderData.take(10).foreach(println) val newTime = System.currentTimeMillis() println("Consume Time: " + (newTime - olderTime)) userOrderData.saveAsTextFile(args(0)) spark.stop() println("Test is Succeed!!!") } }