SPSS时间序列分析应用-空气质量长时预报(含缺失数据处理方法)
1. 打开SPSS,从Excel中读取数据
2. 选择变量视图,将除日期之外的其他变量的测量值设为“标度”
3. 由于要进行时间序列分析,所以要首先定义时间。选择“数据” > "定义日期和时间...",弹出的对话框中选择个案是“天”(不涉及周期性/季节性分析),点击确定。
注意:若数据存在或可能存在周期性/季节性,则应在定义日期时为其设置合适的周期,例如:若认为数据以周为周期,则应选择个案是“周、日”
4. 由于监测仪器的故障,原始数据存在部分缺失值,在进行时间序列分析之前,应补齐这些缺失值。选择“转换” > “替换缺失值...”,选入存在缺失的变量,为每个变量设置转换后的变量名称,以及填补缺失值的方法,注意选择完“方法之后”应点击“变化量”进行确认,否则仍按照默认方法(序列平均值)处理,此处均采用“临近点的线性趋势”,完成后点击确定。
5. 使用时间序列预测之前,应给出预测时间段内的自变量数据,如图所示。
6. 选择“分析” > “时间序列预测” > “创建传统模型...”,将监测数据选为因变量,其他数据选为自变量(选择变量时应注意所选取的变量为补全缺失值的变量),方法选择“专家建模器”。
7. 选择“统计” > 勾选“显示预测值”,选择“图”,全部勾选“每个图显示的内容”。
8. 选择“保存” > 将“预测值”,“置信区间下限”,“置信区间上限”勾选为保存,选择“选项”,设置预测至最后一天,点击确定。
9. 专家建模器可自动识别对自变量有价值的因变量构建时间序列模型,各因变量与自变量最终时间序列模型结构和统计学参数如图所示。
10. 各因变量预测情况如图所示,预测值可在数据视图中查看。