摘要: 抽样算法的主要任务是找到符合给定分布的一系列样本。对于简单的分布,可以通过基本的抽样算法进行抽样。大多数分布都是不容易直接抽样的,马尔可夫链蒙特卡罗算法解决了不能通过简单抽样算法进行抽样的问题,是一种重要的实用性很强的抽样算法。马尔可夫链蒙特卡罗算法(简写为MCMC)的核心思想是找到某个状态空间的马尔可夫链,使得该马尔可夫链的稳定分布就是我们的目标分布。这样我们在该状态空间进行随机游走的时候,每个状态x的停留时间正比于目标概率。在用MCMC进行抽样的时候,我们首先引进一个容易抽样的参考分布q(x),在每步抽样的过程中从q(x)里面得到一个候选样本y, 然后按照一定的原则决定是否接受该样本,该原 阅读全文
posted @ 2013-10-16 17:12 lijiankou 阅读(12160) 评论(1) 推荐(0) 编辑