完全背包问题
分析
代码
朴素O(n^3)会TLE
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 1010;
int n,m;
int v[N],w[N];
int f[N][N];
int main(){
scanf("%d%d",&n,&m);
for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
for (int i = 1; i <= n; i ++ )
for (int j = 0; j <= m; j ++ )
for (int k = 0; k*v[i] <= j; k ++ )
f[i][j] = max(f[i][j],f[i - 1][j - v[i]*k] + k*w[i]);
cout << f[n][m] << endl;
return 0;
}
O(n^2)优化代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 1010;
int n,m;
int v[N],w[N];
int f[N][N];
int main(){
scanf("%d%d",&n,&m);
for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
for (int i = 1; i <= n; i ++ )
for (int j = 0; j <= m; j ++ )
{
f[i][j] = f[i-1][j];
if (j >= v[i])
f[i][j] = max(f[i][j],f[i][j-v[i]] + w[i]);
}
cout << f[n][m] << endl;
return 0;
}
优化成一维数组形式
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 1010;
int n,m;
int v[N],w[N];
int f[N];
int main(){
scanf("%d%d",&n,&m);
for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
for (int i = 1; i <= n; i ++ )
for (int j = v[i]; j <= m; j ++ )
f[j] = max(f[j],f[j-v[i]] + w[i]);
cout << f[m] << endl;
return 0;
}
01背包与完全背包状态转移方程异同:
为什么会有这样的差异?