STM32~配置时钟频率

STM32系列主频两种配置方法分别是,使用外部晶振作为时钟源;内部RC时钟作为时钟源。介绍两种时钟源的区别:

HSI内部8MHz的RC振荡器的误差在1%左右,内部RC振荡器的精度通常比用HSE(外部晶振)要差上十倍以上。
内部RC频率受温度影响比较大,如果省电Sleep模式下内部RC会停止工作。
1 . 时钟系统
  在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

HSI是高速内部时钟,RC振荡器,频率为8MHz。
HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
LSI是低速内部时钟,RC振荡器,频率为40kHz。
LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。


  用户可通过多个预分频器配置AHB总线、高速APB2总线和低速APB1总线的频率。AHB和APB2域的最大频率是72MHZ。APB1域的最大允许频率是36MHZ。SDIO接口的时钟频率固定为HCLK/2。
  40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。
  STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
  另外,STM32还可以选择一个PLL输出的2分频、HSI、HSE、或者系统时钟SYSCLK输出到MCO脚(PA8)上。系统时钟SYSCLK,是供STM32中绝大部分部件工作的时钟源,它可选择为PLL输出、HSI或者HSE,(一般程序中采用PLL倍频到72Mhz)在选择时钟源前注意要判断目标时钟源是否已经稳定振荡。Max=72MHz,它分为2路,1路送给I2S2、I2S3使用的I2S2CLK,I2S3CLK;另外1路通过AHB分频器分频(1/2/4/8/16/64/128/256/512)分频后送给以下8大模块使用:

送给SDIO使用的SDIOCLK时钟。
送给FSMC使用的FSMCCLK时钟。
送给AHB总线、内核、内存和DMA使用的HCLK时钟。
通过8分频后送给Cortex的系统定时器时钟(SysTick)。
直接送给Cortex的空闲运行时钟FCLK。
送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer2-7)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4、5、6、7使用。
送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer1、Timer8)1、2倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1和定时器8使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后得到ADCCLK时钟送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。
2分频后送给SDIO AHB接口使用(HCLK/2)。
详细参考:

STM32时钟系统学习
STM32的时钟树深入详解以及RCC配置
2 . 外部晶振作为时钟源
接下来,解决使用12M外部晶振时,如何配置作为系统时钟源。
第一步,修改stm32f10x.h中的HSE_VALUE为12000000

/**
* @brief In the following line adjust the value of External High Speed oscillator (HSE)
used in your application

Tip: To avoid modifying this file each time you need to use different HSE, you
can define the HSE value in your toolchain compiler preprocessor.
*/
#if !defined HSE_VALUE
#ifdef STM32F10X_CL
#define HSE_VALUE ((uint32_t)25000000) /*!< Value of the External oscillator in Hz */
#else
#define HSE_VALUE ((uint32_t)12000000) /*!< Value of the External oscillator in Hz */
#endif /* STM32F10X_CL */
#endif /* HSE_VALUE */

/**
* @brief In the following line adjust the value of External High Speed oscillator (HSE)
used in your application

Tip: To avoid modifying this file each time you need to use different HSE, you
can define the HSE value in your toolchain compiler preprocessor.
*/
#if !defined HSE_VALUE
#ifdef STM32F10X_CL
#define HSE_VALUE ((uint32_t)25000000) /*!< Value of the External oscillator in Hz */
#else
#define HSE_VALUE ((uint32_t)12000000) /*!< Value of the External oscillator in Hz */
#endif /* STM32F10X_CL */
#endif /* HSE_VALUE */
————————————————

第二步,修改system_stm32f10x.c中的时钟配置,先找到void SystemInit(void)—》SetSysClock()—》SetSysClockTo72(),将9倍频改为6倍频,12*6=72MHz

/**
* @brief Sets System clock frequency to 72MHz and configure HCLK, PCLK2
* and PCLK1 prescalers.
* @note This function should be used only after reset.
* @param None
* @retval None
*/
static void SetSysClockTo72(void)
{
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;

/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);

/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
HSEStatus = (uint32_t)0x01;
}
else
{
HSEStatus = (uint32_t)0x00;
}

if (HSEStatus == (uint32_t)0x01)
{
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;

/* Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;


/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;

/* PCLK2 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;

/* PCLK1 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;

#ifdef STM32F10X_CL
// ...
#else
/* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
RCC_CFGR_PLLMULL));  //清空RCC->CFGR中的对应位
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL6); // 12,修改倍频
#endif /* STM32F10X_CL */

/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;

/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}

/* Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;

/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
{
}
}
else
{ /* If HSE fails to start-up, the application will have wrong clock
configuration. User can add here some code to deal with this error */
}
}

3 . 内部RC作为时钟源
  实际开发中使用内部RC振荡器主频不能达到72,我使用的是STM32F103C8T6,库函数最多支持16倍频也就是8/2*16=64Mhz,实际测试芯片跑不起来功能没有正常工作。使用内部RC振荡最大能达到52M,不信大家可以试验一下。
下面一篇博客中也提到类似问题:

在system_STM32f10x.c中,找到函数void SystemInit (void){} 注释掉所有代码,添加下属代码。

//开启HSI
RCC->CR |= (uint32_t)0x00000001;
//选择HSI为PLL的时钟源,HSI必须2分频给PLL
RCC->CFGR |= (uint32_t)RCC_CFGR_PLLSRC_HSI_Div2;
// 8/2 *13 = 52 8/2 *9 = 36 8/2 * 12,设置倍频
RCC->CFGR |= (uint32_t)RCC_CFGR_PLLMULL12;
//PLL不分频
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
// 使能PLL
RCC->CR |= RCC_CR_PLLON;
// 等待PLL始终就绪
while((RCC->CR & RCC_CR_PLLRDY) == 0){}
// 选择PLL为系统时钟源
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
// 等待PLL成功
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08){}

4 .Keil MDK中Xtal的作用

  在手动配置主频的过程中,想到Keil工程菜单应该提供了配置主频的选项,于是又看到这个。百度了一下,这个参数只用于软件仿真的,对于硬件仿真或者直接把程序下载到板子里是没有影响的。
  Xtal 后面的数值是晶振频率值,默认值是所选目标 CPU 的最高可用频率值 。该数值与最终产生的目标代码无关,仅用于软件模拟调试时显示程序执行时间。正确设置该数值可使显示时间与实际所用时间一致,一般将其设置成与你的硬件所用晶振频率相同。
————————————————
版权声明:本文为CSDN博主「Hynson」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Bluechalk/article/details/84498291

posted @ 2021-04-14 10:34  非是非非  阅读(1921)  评论(0编辑  收藏  举报