摘要: 回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。 回溯法的一般流程和技术在用回溯法... 阅读全文
posted @ 2013-11-13 20:02 技术让梦想更伟大 阅读(1686) 评论(0) 推荐(0) 编辑
摘要: 假定要设计一个系统,这个系统由若干个以串联方式连接在一起的不同设备所组成(图6.1所示)。设ri是设备Di的可靠性(即ri是Di正常运转的概率),则整个系统的可靠性就是Πri。即便这些单个设备是非常可靠的(每个ri都非常接近于1),该系统的可靠性也不一定很高。 为了提高系统可靠性,最好是增加一些重复设备,并通过开关线路把数个同类设备并联在一起(见图6.2)。由开关线路来判明其中的设备的运行情况,并将能正常运行的某台投入使用. 若第i级的设备Di的台数为mi,那么这mi台设备同时出现故障的概率为(1-ri)mi。从而第i级的可靠性就变成1-(1-ri)mi。在任何实际系统中,每一级的可靠... 阅读全文
posted @ 2013-11-13 17:26 技术让梦想更伟大 阅读(485) 评论(0) 推荐(0) 编辑
摘要: 对于0/1背包问题,可以通过作出变量x1,x2,…,xi的一个决策序列来得到它的解。而对变量x的决策就是决定它是取0值还是取1值。假定决策这些x的次序为xn,xn-1,…,x1。在对xn作出决策之后,问题处于下列两种状态之一: 背包的剩余容量是M,则没有产生任何效益; 剩余容量是M-w,则效益值增长了P。显然,对xn-l,xn-2,…,x1的决策相对于决策x所产生的问题状态应该是最优的,否则xn,xn-1,…,x1就不可能是最优决策序列。如果设fj(x)是Knap(1,j,X)最优解的值,那么fn(M)就可表示为: fn(M) = max {fn-1(M), fn-1(M-wn)+p... 阅读全文
posted @ 2013-11-13 12:29 技术让梦想更伟大 阅读(1252) 评论(0) 推荐(0) 编辑