开源任务管理框架oozie学习

1、  oozie简介

应用背景:在工作中,可能需要好几个Hadoop作业(job)来协作完成,往往一个job的输出会被当做另一个job的输入来使用,这个时候就涉及到了数据流的处理。

我们不可能就盯着程序,等它运行完再去运行下一个程序,所以,一般的做法就是通过shell来做,但是如果涉及到的工作流很复杂(比方说有1,2,3,4四个作业,1的输出作为2 3 4的输入,然后2 3的结果运算之后再和1的结果进行某种运算……最后再输出)是很费时费力的。这里就用到了oozie——一个能把多个MR作业组合为一个逻辑工作单元(一个工作流),从而自动完成任务调用的工具。

 oozie字面释义为训象人,是一个基于Hadoop的开源工作流调度框架,运行在内置的Tomcat中,支持多种Hadoop类型作业调度,如常见的MapReduce、hive、spark、shell脚本等任务。

特点:1)、基于Hadoop的任务流的任务调度系统;(任务流基于workflow.xml配置文件去定义,主要围绕Hadoop的平台组件的任务调度);

2)  、工作流是由action组成的有向无环图(DAG);

3)、多个workflow(任务流)可以组成一个coordinator(协调器),多个coordinator可以抽象成bundle。coordinator job是由时间(频率)和数据可用性触发的重复的workflow jobs;

4)、支持Hadoop平台的多种任务类型,如Java map-reduce, Streaming map-reduce, Pig, Hive, Sqoop and Distcp,同时也支持Java 程序和shell脚本等;

5)、oozie是一个可伸缩、高可用、可扩展的系统;(基于Hadoop平台而言)

 oozie 安装:1)从Apache官网下载源码,通过maven编译生成安装包,mkdistro.sh脚本编译需要指定Hadoop、hive、spark等版本号,根据版本获取依赖包,生成安装文件;

 

2)、编译成功之后会在distro/target下生成一个oozie-4.3.1-distro.tar.gz 安装文件,解压安装文件,将oozie.war增加extjs 包和数据库jdbc连接包之后,从先打包成新的war包;

3)、通过oozie.sql 创建数据库,导入环境变量,执行oozie-run.sh,启动成功,界面为11000端口访问:

 

2、 oozie的架构及实现原理

组件架构图如下:

原理:oozie对工作流的编排,是基于workflow.xml文件来完成的,用户预先将工作流执行规则定制于workflow.xml文件中,并在job.properties配置相关的参数,然后由oozie server 向服务器提交一个JOB来启动工作流。

工作流由两种节点组成,分别为控制流节点和执行节点:

控制流节点(Control Flow Nodes):控制工作流的执行路径,包括start、end、kill、decision、fork、join等;

行为节点(Action Nodes):决定每个操作执行的任务类型,包括map-reduce,java,hive,shell,pig等;

3、工作流配置

一个oozie 的 job 一般由以下文件组成(文件需要上传到HDFS,不支持本地运行):

job.properties :记录了job的属性;

workflow.xml :定义任务的流程和分支;

lib目录:用来执行具体的任务,也就是我们需要执行的jar包或命令文件;

job.properties 配置文件:

nameNode=hdfs://127.0.0.1:8020    //HDFS 地址
jobTracker=127.0.0.1:8032         // 配置resourcemanager地址
queueName=default           //oozie队列名称(默认default)
examplesRoot=examples       //全局目录(默认examples)
oozie.use.system.libpath=true   //是否加载用户lib目录
oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/apps/spark
//任务流地址(workflow.xml所在地址)
//user.name 当前用户

workflow.xml 配置文件:

spark action:

<workflow-app name="[WF-DEF-NAME]" xmlns="uri:oozie:workflow:0.3">
    ...
    <action name="[NODE-NAME]">
        <spark xmlns="uri:oozie:spark-action:0.1">
            <job-tracker>[JOB-TRACKER]</job-tracker>
            <name-node>[NAME-NODE]</name-node>
            <prepare>   //任务启动之前执行文件操作
               <delete path="[PATH]"/>
               ...
               <mkdir path="[PATH]"/>
               ...
            </prepare>
            <job-xml>[SPARK SETTINGS FILE]</job-xml>  
//指定spark job的配置文件,多个配置文件可以配置多个标签
            <configuration> 
//需要对spark进行定义的配置属性,如name为mapred.compress.map.output,value为true
                <property>
                    <name>[PROPERTY-NAME]</name>
                    <value>[PROPERTY-VALUE]</value>
                </property>
                ...
            </configuration>
            <master>[SPARK MASTER URL]</master>   //yarn-cluster 、yarn-master等
            <mode>[SPARK MODE]</mode>    //spark 运行模式client、cluster等
            <name>[SPARK JOB NAME]</name>   //job name
            <class>[SPARK MAIN CLASS]</class>
            <jar>[SPARK DEPENDENCIES JAR / PYTHON FILE]</jar> 
// jar包或python文件,多个以,分隔
            <spark-opts>[SPARK-OPTIONS]</spark-opts>  //传递给driver的参数,如—conf,--driver-memory 等
            <arg>[ARG-VALUE]</arg>  //指定spark job参数,如inputpath,value等
                ...
        </spark>
        <ok to="[NODE-NAME]"/>    //执行成功之后下一个执行action
        <error to="[NODE-NAME]"/>   //执行失败之后下一个执行action
    </action>
    ...
</workflow-app> 
hive action:
<workflow-app name="[WF-DEF-NAME]" xmlns="uri:oozie:workflow:0.4">
    ...
    <action name="[NODE-NAME]">
        <hive2 xmlns="uri:oozie:hive2-action:0.1">
            <job-tracker>[JOB-TRACKER]</job-tracker>
            <name-node>[NAME-NODE]</name-node>
            <prepare>  
               <delete path="[PATH]"/>
               ...
               <mkdir path="[PATH]"/>
               ...
            </prepare>
            <job-xml>[HIVE SETTINGS FILE]</job-xml> 
            <configuration> 
                <property>
                    <name>[PROPERTY-NAME]</name>
                    <value>[PROPERTY-VALUE]</value>
                </property>
                ...
            </configuration>
            <jdbc-url>[jdbc:hive2://HOST:10000/default]</jdbc-url>
            <password>[PASS]</password>
            <script>[HIVE-SCRIPT]</script>  //指定hive脚本的执行文件
            <param>[PARAM-VALUE]</param> //对hive脚本中定义的变量进行值传递
                ...
            <param>[PARAM-VALUE]</param>
            <argument>[ARG-VALUE]</argument>  //beeline 命令行的参数值传递
                ...
        </hive2>
        <ok to="[NODE-NAME]"/>
        <error to="[NODE-NAME]"/>
    </action>
    ...
</workflow-app>

4、例子

以自带的example为示例,配置job.properties:

public final class SparkFileCopy {
    public static void main(String[] args) throws Exception {
        if (args.length < 2) {
            System.err.println("Usage: SparkFileCopy <file> <file>");
            System.exit(1);
        }
        SparkConf sparkConf = new SparkConf().setAppName("SparkFileCopy");
        JavaSparkContext ctx = new JavaSparkContext(sparkConf);
        JavaRDD<String> lines = ctx.textFile(args[0]);
        lines.saveAsTextFile(args[1]);
        System.out.println("Copied file from " + args[0] + " to " + args[1]);
        ctx.stop();
    }
}

任务提交命令:oozie job -oozie http://127.0.0.1:11000/oozie -config job.properties  -run

job.properties 配置:

nameNode=hdfs://127.0.0.1:8020
jobTracker=127.0.0.1:8032
master=yarn-client
queueName=default
examplesRoot=examples
oozie.use.system.libpath=true
oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/apps/spark
posted @ 2019-01-14 17:53  Clerver  阅读(1030)  评论(0编辑  收藏  举报