八数码
经典的八数码问题,有人说不做此题人生不完整,哈哈。
状态总数是9! = 362880 种,不算太多,可以满足广搜和A*对于空间的需求。
状态可以每次都动态生成,也可以生成一次存储起来,我用的动态生成,《组合数学》书上有一种生成排列的方法叫做"序数法",我看了一会书,把由排列到序数,和由序数到排列的两个函数写了出来,就是代码中的int order(const char *s, int n) 和void get_node(int num, node &tmp)两个函数。
启发函数,用的是除空格外的八个数字到正确位置的网格距离。
几种方法的比较:广搜,效率最低,500ms;A*,32ms,已经比较高效了;IDA*, 0ms,空间也减少许多。A*为判重付出了巨大代价,时间 and 空间,uva上还有一个15数码的题,用A*肯定会爆空间的。IDA*不记录已经走过的路径,所以省去了空间,也省去了判断重复的步骤,但是会出现重复计算。
广搜:
代码 // BFS #include<iostream> #include<cstdio> #include<queue> using namespace std; /* 把1..n的排列映射为数字 0..(n!-1) */ int fac[] = { 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880 };//... int order(const char *s, int n) { int i, j, temp, num; num = 0; for (i = 0; i < n-1; i++) { temp = 0; for (j = i + 1; j < n; j++) { if (s[j] < s[i]) temp++; } num += fac[s[i] -1] * temp; } return num; } bool is_equal(const char *b1, const char *b2){ for(int i=0; i<9; i++) if(b1[i] != b2[i]) return false; return true; } //hash struct node{ char board[9]; char space;//空格所在位置 }; const int TABLE_SIZE = 362880; int hash(const char *cur){ return order(cur, 9); } /* 整数映射成排列 */ void get_node(int num, node &tmp) { int n=9; int a[9]; //求逆序数 for (int i = 2; i <= n; ++i) { a[i - 1] = num % i; num = num / i; tmp.board[i - 1] = 0;//初始化 } tmp.board[0] = 0; int rn, i; for (int k = n; k >= 2; k--) { rn = 0; for (i = n - 1; i >= 0; --i) { if (tmp.board[i] != 0) continue; if (rn == a[k - 1]) break; ++rn; } tmp.board[i] = k; } for (i = 0; i < n; ++i) if (tmp.board[i] == 0) { tmp.board[i] = 1; break; } tmp.space = n - a[n-1] -1; } char visited[TABLE_SIZE]; int parent[TABLE_SIZE]; char move[TABLE_SIZE]; int step[4][2] = {{-1, 0},{1, 0}, {0, -1}, {0, 1}};//u, d, l, r void BFS(const node & start){ int x, y, k, a, b; int u, v; for(k=0; k<TABLE_SIZE; ++k) visited[k] = 0; u = hash(start.board); parent[u] = -1; visited[u] = 1; queue<int> que; que.push(u); node tmp, cur; while(!que.empty()){ u = que.front(); que.pop(); get_node(u, cur); k = cur.space; x = k / 3; y = k % 3; for(int i=0; i<4; ++i){ a = x + step[i][0]; b = y + step[i][1]; if(0<=a && a<=2 && 0<=b && b<=2){ tmp = cur; tmp.space = a*3 + b; swap(tmp.board[k], tmp.board[tmp.space]); v = hash(tmp.board); if(visited[v] != 1){ move[v] = i; visited[v] = 1; parent[v] = u; if(v == 0) //目标结点hash值为0 return; que.push(v); } } } } } void print_path(){ int n, u; char path[1000]; n = 1; path[0] = move[0]; u = parent[0]; while(parent[u] != -1){ path[n] = move[u]; ++n; u = parent[u]; } for(int i=n-1; i>=0; --i){ if(path[i] == 0) printf("u"); else if(path[i] == 1) printf("d"); else if(path[i] == 2) printf("l"); else printf("r"); } } int main(){ freopen("in", "r", stdin); node start; char c; for(int i=0; i<9; ++i){ cin>>c; if(c == 'x'){ start.board[i] = 9; start.space = i; } else start.board[i] = c - '0'; } BFS(start); if(visited[0] == 1) print_path(); else printf("unsolvable"); return 0; }
A*算法:
代码中对priority_queue<>模板的使用还是很有技巧性的,通过push一个最小的,再把它pop出来就解决了由于更改造成不一致性。前面这种做法是错误的,多谢一位朋友的提醒,这种方式确实不能保持堆的性质。不过我们可以采用冗余的办法,直接插入新值,这就不会破坏堆的性质了。
修改过的代码:
代码
// A*
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<queue>
using namespace std;
/* 把1..n的排列映射为数字 0..(n!-1) */
int fac[] = { 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880 };//...
int order(const char *s, int n) {
int i, j, temp, num;
num = 0;
for (i = 0; i < n-1; i++) {
temp = 0;
for (j = i + 1; j < n; j++) {
if (s[j] < s[i])
temp++;
}
num += fac[s[i] -1] * temp;
}
return num;
}
bool is_equal(const char *b1, const char *b2){
for(int i=0; i<9; i++)
if(b1[i] != b2[i])
return false;
return true;
}
//hash
struct node{
char board[9];
char space;//空格所在位置
};
const int TABLE_SIZE = 362880;
int hash(const char *cur){
return order(cur, 9);
}
/* 整数映射成排列 */
void get_node(int num, node &tmp) {
int n=9;
int a[9]; //求逆序数
for (int i = 2; i <= n; ++i) {
a[i - 1] = num % i;
num = num / i;
tmp.board[i - 1] = 0;//初始化
}
tmp.board[0] = 0;
int rn, i;
for (int k = n; k >= 2; k--) {
rn = 0;
for (i = n - 1; i >= 0; --i) {
if (tmp.board[i] != 0)
continue;
if (rn == a[k - 1])
break;
++rn;
}
tmp.board[i] = k;
}
for (i = 0; i < n; ++i)
if (tmp.board[i] == 0) {
tmp.board[i] = 1;
break;
}
tmp.space = n - a[n-1] -1;
}
//启发函数: 除去x之外到目标的网格距离和
int goal_state[9][2] = {{0,0}, {0,1}, {0,2},
{1,0}, {1,1}, {1,2}, {2,0}, {2,1}, {2,2}};
int h(const char *board){
int k;
int hv = 0;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j){
k = i*3+j;
if(board[k] != 9){
hv += abs(i - goal_state[board[k]-1][0]) +
abs(j - goal_state[board[k] -1][1]);
}
}
return hv;
}
int f[TABLE_SIZE], d[TABLE_SIZE];//估计函数和深度
//优先队列的比较对象
struct cmp{
bool operator () (int u, int v){
return f[u] > f[v];
}
};
char color[TABLE_SIZE];//0, 未访问;1, 在队列中,2, closed
int parent[TABLE_SIZE];
char move[TABLE_SIZE];
int step[4][2] = {{-1, 0},{1, 0}, {0, -1}, {0, 1}};//u, d, l, r
void A_star(const node & start){
int x, y, k, a, b;
int u, v;
priority_queue<int, vector<int>, cmp> open;
memset(color, 0, sizeof(char) * TABLE_SIZE);
u = hash(start.board);
parent[u] = -1;
d[u] = 0;
f[u] = h(start.board);
open.push(u);
color[u] = 1;
node tmp, cur;
while(!open.empty()){
u = open.top();
if(u == 0)
return;
open.pop();
get_node(u, cur);
k = cur.space;
x = k / 3;
y = k % 3;
for(int i=0; i<4; ++i){
a = x + step[i][0];
b = y + step[i][1];
if(0<=a && a<=2 && 0<=b && b<=2){
tmp = cur;
tmp.space = a*3 + b;
swap(tmp.board[k], tmp.board[tmp.space]);
v = hash(tmp.board);
if(color[v] == 1 && (d[u] + 1) < d[v]){//v in open
move[v] = i;
f[v] = f[v] - d[v] + d[u] + 1;//h[v]已经求过
d[v] = d[u] + 1;
parent[v] = u;
//直接插入新值, 有冗余,但不会错
open.push(v);
}
else if(color[v] == 2 && (d[u]+1)<d[v]){//v in closed
move[v] = i;
f[v] = f[v] - d[v] + d[u] + 1;//h[v]已经求过
d[v] = d[u] + 1;
parent[v] = u;
open.push(v);
color[v] = 1;
}
else if(color[v] == 0){
move[v] = i;
d[v] = d[u] + 1;
f[v] = d[v] + h(tmp.board);
parent[v] = u;
open.push(v);
color[v] = 1;
}
}
}
color[u] = 2; //
}
}
void print_path(){
int n, u;
char path[1000];
n = 1;
path[0] = move[0];
u = parent[0];
while(parent[u] != -1){
path[n] = move[u];
++n;
u = parent[u];
}
for(int i=n-1; i>=0; --i){
if(path[i] == 0)
printf("u");
else if(path[i] == 1)
printf("d");
else if(path[i] == 2)
printf("l");
else
printf("r");
}
}
int main(){
//freopen("in", "r", stdin);
node start;
char c;
for(int i=0; i<9; ++i){
cin>>c;
if(c == 'x'){
start.board[i] = 9;
start.space = i;
}
else
start.board[i] = c - '0';
}
A_star(start);
if(color[0] != 0)
print_path();
else
printf("unsolvable");
return 0;
}
代码
// IDA*
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
#define SIZE 3
char board[SIZE][SIZE];
//启发函数: 除去x之外到目标的网格距离和
int goal_state[9][2] = {{0,0}, {0,1}, {0,2},
{1,0}, {1,1}, {1,2}, {2,0}, {2,1}, {2,2}};
int h(char board[][SIZE]){
int cost = 0;
for(int i=0; i<SIZE; ++i)
for(int j=0; j<SIZE; ++j){
if(board[i][j] != SIZE*SIZE){
cost += abs(i - goal_state[board[i][j]-1][0]) +
abs(j - goal_state[board[i][j]-1][1]);
}
}
return cost;
}
int step[4][2] = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}};//u, l, r, d
char op[4] = {'u', 'l', 'r', 'd'};
char solution[1000];
int bound; //上界
bool ans; //是否找到答案
int DFS(int x, int y, int dv, char pre_move){// 返回next_bound
int hv = h(board);
if(hv + dv > bound)
return dv + hv;
if(hv == 0){
ans = true;
return dv;
}
int next_bound = 1e9;
for(int i=0; i<4; ++i){
if(i + pre_move == 3)//与上一步相反的移动
continue;
int nx = x + step[i][0];
int ny = y + step[i][1];
if(0<=nx && nx<SIZE && 0<=ny && ny<SIZE){
solution[dv] = i;
swap(board[x][y], board[nx][ny]);
int new_bound = DFS(nx, ny, dv+1, i);
if(ans)
return new_bound;
next_bound = min(next_bound, new_bound);
swap(board[x][y], board[nx][ny]);
}
}
return next_bound;
}
void IDA_star(int sx, int sy){
ans = false;
bound = h(board);//初始代价
while(!ans && bound <= 100)//上限
bound = DFS(sx, sy, 0, -10);
}
int main(){
freopen("in", "r", stdin);
int sx, sy;//起始位置
char c;
for(int i=0; i<SIZE; ++i)
for(int j=0; j<SIZE; ++j){
cin>>c;
if(c == 'x'){
board[i][j] = SIZE * SIZE;
sx = i;
sy = j;
}
else
board[i][j] = c - '0';
}
IDA_star(sx, sy);
if(ans){
for(int i=0; i<bound; ++i)
cout<<op[solution[i]];
}
else
cout<<"unsolvable";
return 0;
}