opencv去除背景

1、肤色侦测法
   肤色提取是基于人机互动方面常见的方法。因为肤色是人体的一大特征,它可以迅速从复杂的背景下分离出自己的特征区域。一下介绍两种常见的肤色提取:

(1)HSV空间的肤色提取
     HSV色彩空间是一个圆锥形的模型,具体如右图所示:
 色相(H)是色彩的基本属性,就是平常说的颜色名称,例如红色、黄色等,
依照右图的标准色轮上的位置,取360度得数值。(也有0~100%的方法确定) 饱和度(S)是色彩的纯度,越高色彩越纯,低则变灰。取值为0~100%。明度(V)也叫亮度,取值0~100。
     根据肤色在HSV三个分量上的值,就可以简单的侦测出一张图像上肤色的部分。一下是肤色侦测函数的源代码:
[c-sharp] view plaincopy

    void skinDetectionHSV(IplImage* pImage,int lower,int upper,IplImage* process)  
    {  
        IplImage* pImageHSV = NULL;  
        IplImage* pImageH = NULL;  
        IplImage* pImageS = NULL;  
        IplImage* pImageProcessed = NULL;  
        IplImage* tmpH = NULL;  
        IplImage* tmpS = NULL;  
        static IplImage* pyrImage = NULL;  
      
        CvSize imgSize;  
        imgSize.height = pImage->height;  
        imgSize.width = pImage->width ;  
      
        //create you want to use image and give them memory allocation  
        pImageHSV = cvCreateImage(imgSize,IPL_DEPTH_8U,3);  
        pImageH = cvCreateImage(imgSize,IPL_DEPTH_8U,1);  
        pImageS = cvCreateImage(imgSize,IPL_DEPTH_8U,1);  
        tmpS = cvCreateImage(imgSize,IPL_DEPTH_8U,1);  
        tmpH = cvCreateImage(imgSize,IPL_DEPTH_8U,1);  
        pImageProcessed = cvCreateImage(imgSize,IPL_DEPTH_8U,1);  
        pyrImage = cvCreateImage(cvSize(pImage->width/2,pImage->height/2),IPL_DEPTH_8U,1);  
      
        //convert RGB image to HSV image  
        cvCvtColor(pImage,pImageHSV,CV_BGR2HSV);  
      
        //Then split HSV to three single channel images  
        cvCvtPixToPlane(pImageHSV,pImageH,pImageS,NULL,NULL);  
        //The skin scalar range in H and S, Do they AND algorithm  
        cvInRangeS(pImageH,cvScalar(0.0,0.0,0,0),cvScalar(lower,0.0,0,0),tmpH);  
        cvInRangeS(pImageS,cvScalar(26,0.0,0,0),cvScalar(upper,0.0,0,0),tmpS);  
        cvAnd(tmpH,tmpS,pImageProcessed,0);  
        //  
        //cvPyrDown(pImageProcessed,pyrImage,CV_GAUSSIAN_5x5);  
        //cvPyrUp(pyrImage,pImageProcessed,CV_GAUSSIAN_5x5);  
        //Erode and dilate  
        cvErode(pImageProcessed,pImageProcessed,0,2);  
        cvDilate(pImageProcessed,pImageProcessed,0,1);  
      
        cvCopy(pImageProcessed,process,0);  
        //do clean  
        cvReleaseImage(&pyrImage);  
        cvReleaseImage(&pImageHSV);  
        cvReleaseImage(&pImageH);  
        cvReleaseImage(&pImageS);  
        cvReleaseImage(&pyrImage);  
        cvReleaseImage(&tmpH);  
        cvReleaseImage(&tmpS);  
        cvReleaseImage(&pImageProcessed);  
    }  

 

 

 (2)YCrCb空间的肤色提取
   YCrCb也是一种颜色空间,也可以说是YUV的颜色空间。Y是亮度的分量,而肤色侦测是对亮度比较敏感的,由摄像头拍摄的RGB图像转化为YCrCb空间的话可以去除亮度对肤色侦测的影响。下面给出基于YCrCb肤色侦测函数的源代码:

 
[c-sharp] view plaincopy

    void skinDetectionYCrCb(IplImage* imageRGB,int lower,int upper,IplImage* imgProcessed)  
    {  
      
            assert(imageRGB->nChannels==3);  
        IplImage* imageYCrCb = NULL;  
        IplImage* imageCb = NULL;  
        imageYCrCb = cvCreateImage(cvGetSize(imageRGB),8,3);  
        imageCb = cvCreateImage(cvGetSize(imageRGB),8,1);  
      
        cvCvtColor(imageRGB,imageYCrCb,CV_BGR2YCrCb);  
        cvSplit(imageYCrCb,0,0,imageCb,0);//Cb  
        for (int h=0;hheight;h++)  
            {  
            for (int w=0;wwidth;w++)  
                     {  
                unsigned char* p =(unsigned char*)(imageCb->imageData+h*imageCb->widthStep+w);  
                if (*p<=upper&&*p>=lower)  
                           {  
                    *p=255;  
                }  
                            else  
                            {  
                    *p=0;  
                }  
            }  
        }  
        cvCopy(imageCb,imgProcessed,NULL);  
    }  

 

2、基于混合高斯模型去除背景法

   高斯模型去除背景法也是背景去除的一种常用的方法,经常会用到视频图像侦测中。这种方法对于动态的视频图像特征侦测比较适合,因为模型中是前景和背景分离开来的。分离前景和背景的基准是判断像素点变化率,会把变化慢的学习为背景,变化快的视为前景。
[c-sharp] view plaincopy

    //  
     
    #include "stdafx.h"  
    #include "cv.h"  
    #include "highgui.h"  
    #include "cxtypes.h"  
    #include "cvaux.h"  
    # include   
      
    using namespace std;  
      
      
    int _tmain(int argc, _TCHAR* argv[])  
    {  
        //IplImage* pFirstFrame = NULL;  
    IplImage* pFrame = NULL;  
        IplImage* pFrImg = NULL;  
        IplImage* pBkImg = NULL;  
        IplImage* FirstImg = NULL;  
        static IplImage* pyrImg =NULL;  
        CvCapture* pCapture = NULL;  
        int nFrmNum = 0;  
        int first = 0,next = 0;  
        int thresh = 0;  
      
        cvNamedWindow("video",0);  
        //cvNamedWindow("background",0);  
        cvNamedWindow("foreground",0);  
        cvResizeWindow("video",400,400);  
        cvResizeWindow("foreground",400,400);  
        //cvCreateTrackbar("thresh","foreground",&thresh,255,NULL);  
        //cvMoveWindow("background",360,0);  
        //cvMoveWindow("foregtound",0,0);  
      
        if(!(pCapture = cvCaptureFromCAM(1)))  
        {  
            printf("Could not initialize camera , please check it !");  
            return -1;  
        }  
      
        CvGaussBGModel* bg_model = NULL;  
      
        while(pFrame = cvQueryFrame(pCapture))  
        {  
            nFrmNum++;  
            if(nFrmNum == 1)  
            {  
                pBkImg = cvCreateImage(cvGetSize(pFrame),IPL_DEPTH_8U,3);  
                pFrImg = cvCreateImage(cvGetSize(pFrame),IPL_DEPTH_8U,1);  
                FirstImg = cvCreateImage(cvGetSize(pFrame),IPL_DEPTH_8U,1);  
                pyrImg = cvCreateImage(cvSize(pFrame->width/2,pFrame->height/2),IPL_DEPTH_8U,1);  
                  
                CvGaussBGStatModelParams params;  
                params.win_size = 2000;             //Learning rate = 1/win_size;  
                params.bg_threshold = 0.7;         //Threshold  sum of weights for background test  
                params.weight_init = 0.05;  
                params.variance_init = 30;  
                params.minArea = 15.f;  
                params.n_gauss = 5; //= K =Number of gaussian in mixture  
                params.std_threshold = 2.5;  
      
                //cvCopy(pFrame,pFirstFrame,0);  
              
                bg_model = (CvGaussBGModel*)cvCreateGaussianBGModel(pFrame,¶ms);  
            }  
            else  
            {  
                    int regioncount = 0;  
                    int totalNum = pFrImg->width *pFrImg->height ;  
                      
                    cvSmooth(pFrame,pFrame,CV_GAUSSIAN,3,0,0,0);  
          
                    cvUpdateBGStatModel(pFrame,(CvBGStatModel*)bg_model,-0.00001);  
                    cvCopy(bg_model->foreground ,pFrImg,0);  
                    cvCopy(bg_model->background ,pBkImg,0);  
                    //cvShowImage("background",pBkImg);  
      
                    //cvSmooth(pFrImg,pFrImg,CV_GAUSSIAN,3,0,0,0);  
                    //cvPyrDown(pFrImg,pyrImg,CV_GAUSSIAN_5x5);  
                    //cvPyrUp(pyrImg,pFrImg,CV_GAUSSIAN_5x5);  
                    //cvSmooth(pFrImg,pFrImg,CV_GAUSSIAN,3,0,0,0);  
                    cvErode(pFrImg,pFrImg,0,1);  
                    cvDilate(pFrImg,pFrImg,0,3);  
      
                    //pBkImg->origin = 1;  
                    //pFrImg->origin = 1;  
                  
                cvShowImage("video",pFrame);  
                cvShowImage("foreground",pFrImg);  
                //cvReleaseBGStatModel((CvBGStatModel**)&bg_model);  
                //bg_model = (CvGaussBGModel*)cvCreateGaussianBGModel(pFrame,0);  
                /* 
                //catch target frame 
                if(nFrmNum>10 &&(double)cvSumImage(pFrImg)>0.3 * totalNum) 
                { 
                     
                    first = cvSumImage(FirstImg); 
                    next = cvSumImage(pFrImg); 
                    printf("Next number is :%d /n",next); 
                    cvCopy(pFrImg,FirstImg,0); 
                } 
                cvShowImage("foreground",pFrImg); 
                cvCopy(pFrImg,FirstImg,0); 
                */  
                if(cvWaitKey(2)== 27)  
                {  
                    break;  
                }  
            }  
        }  
        cvReleaseBGStatModel((CvBGStatModel**)&bg_model);  
        cvDestroyAllWindows();  
        cvReleaseImage(&pFrImg);  
        cvReleaseImage(&FirstImg);  
        cvReleaseImage(&pFrame);  
        cvReleaseImage(&pBkImg);  
        cvReleaseCapture(&pCapture);  
      
        return 0;  
    }  

 

 

3、背景相减背景去除方法

   所谓的背景相减,是指把摄像头捕捉的图像第一帧作为背景,以后的每一帧都减去背景帧,这样减去之后剩下的就是多出来的特征物体(要侦测的物体)的部分。但是相减的部分也会对特征物体的灰阶值产生影响,一般是设定相关阈值要进行判断。以下是代码部分:


 
[c-sharp] view plaincopy

    int _tmain(int argc, _TCHAR* argv[])  
    {  
        int thresh_low = 30;  
          
        IplImage* pImgFrame = NULL;   
        IplImage* pImgProcessed = NULL;  
        IplImage* pImgBackground = NULL;  
        IplImage* pyrImage = NULL;  
      
        CvMat* pMatFrame = NULL;  
        CvMat* pMatProcessed = NULL;  
        CvMat* pMatBackground = NULL;  
      
        CvCapture* pCapture = NULL;  
      
        cvNamedWindow("video", 0);  
        cvNamedWindow("background",0);  
        cvNamedWindow("processed",0);  
        //Create trackbar  
        cvCreateTrackbar("Low","processed",&thresh_low,255,NULL);  
      
        cvResizeWindow("video",400,400);  
        cvResizeWindow("background",400,400);  
        cvResizeWindow("processed",400,400);  
      
        cvMoveWindow("video", 0, 0);  
        cvMoveWindow("background", 400, 0);  
        cvMoveWindow("processed", 800, 0);  
          
        if( !(pCapture = cvCaptureFromCAM(1)))  
        {  
            fprintf(stderr, "Can not open camera./n");  
            return -2;  
        }  
      
        //first frame  
        pImgFrame = cvQueryFrame( pCapture );  
        pImgBackground = cvCreateImage(cvSize(pImgFrame->width, pImgFrame->height),  IPL_DEPTH_8U,1);  
        pImgProcessed = cvCreateImage(cvSize(pImgFrame->width, pImgFrame->height),  IPL_DEPTH_8U,1);  
        pyrImage = cvCreateImage(cvSize(pImgFrame->width/2, pImgFrame->height/2),  IPL_DEPTH_8U,1);  
      
        pMatBackground = cvCreateMat(pImgFrame->height, pImgFrame->width, CV_32FC1);  
        pMatProcessed = cvCreateMat(pImgFrame->height, pImgFrame->width, CV_32FC1);  
        pMatFrame = cvCreateMat(pImgFrame->height, pImgFrame->width, CV_32FC1);  
      
        cvSmooth(pImgFrame, pImgFrame, CV_GAUSSIAN, 3, 0, 0);  
        cvCvtColor(pImgFrame, pImgBackground, CV_BGR2GRAY);  
        cvCvtColor(pImgFrame, pImgProcessed, CV_BGR2GRAY);  
      
        cvConvert(pImgProcessed, pMatFrame);  
        cvConvert(pImgProcessed, pMatProcessed);  
        cvConvert(pImgProcessed, pMatBackground);  
        cvSmooth(pMatBackground, pMatBackground, CV_GAUSSIAN, 3, 0, 0);  
      
        while(pImgFrame = cvQueryFrame( pCapture ))  
        {  
            cvShowImage("video", pImgFrame);  
            cvSmooth(pImgFrame, pImgFrame, CV_GAUSSIAN, 3, 0, 0);  
      
            cvCvtColor(pImgFrame, pImgProcessed, CV_BGR2GRAY);  
            cvConvert(pImgProcessed, pMatFrame);  
      
            cvSmooth(pMatFrame, pMatFrame, CV_GAUSSIAN, 3, 0, 0);  
            cvAbsDiff(pMatFrame, pMatBackground, pMatProcessed);  
            //cvConvert(pMatProcessed,pImgProcessed);  
            //cvThresholdBidirection(pImgProcessed,thresh_low);  
            cvThreshold(pMatProcessed, pImgProcessed, 30, 255.0, CV_THRESH_BINARY);  
              
            cvPyrDown(pImgProcessed,pyrImage,CV_GAUSSIAN_5x5);  
            cvPyrUp(pyrImage,pImgProcessed,CV_GAUSSIAN_5x5);  
            //Erode and dilate  
            cvErode(pImgProcessed, pImgProcessed, 0, 1);  
            cvDilate(pImgProcessed, pImgProcessed, 0, 1);     
              
            //background update  
            cvRunningAvg(pMatFrame, pMatBackground, 0.0003, 0);                   
            cvConvert(pMatBackground, pImgBackground);  
              
              
            cvShowImage("background", pImgBackground);  
            cvShowImage("processed", pImgProcessed);  
              
            //cvZero(pImgProcessed);  
            if( cvWaitKey(10) == 27 )  
            {  
                break;  
            }  
        }  
      
        cvDestroyWindow("video");  
        cvDestroyWindow("background");  
        cvDestroyWindow("processed");  
      
        cvReleaseImage(&pImgProcessed);  
        cvReleaseImage(&pImgBackground);  
      
        cvReleaseMat(&pMatFrame);  
        cvReleaseMat(&pMatProcessed);  
        cvReleaseMat(&pMatBackground);  
      
        cvReleaseCapture(&pCapture);  
      
        return 0;  
    }  
posted @ 2012-04-19 17:31  痴人指路  阅读(3631)  评论(0编辑  收藏  举报