2003 NOIP TG
设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),当中数字1,2,3,…,n为节点编号。每一个节点都有一个分数(均为正整数),记第j个节点的分数为di,tree及它的每一个子树都有一个加分,任一棵子树subtree(也包括tree本身)的加分计算方法例如以下:
subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数
若某个子树为主,规定其加分为1,叶子的加分就是叶节点本身的分数。
不考虑它的空
子树。
试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。
要求输出;
(1)tree的最高加分
(2)tree的前序遍历
如今,请你帮助你的好朋友XZ设计一个程序。求得正确的答案。
第1行:一个整数n(n<=30),为节点个数。
第2行:n个用空格隔开的整数,为每一个节点的分数(分数<=100)
第1行:一个整数。为最高加分(结果不会超过4,000,000,000)。
第2行:n个用空格隔开的整数。为该树的前序遍历。
5
5 7 1 2 10
145
3 1 2 4 5
n(n<=30)
分数<=100
枚举根结点k:i<=k<=j。得到不同的二叉树:
左子树中序遍历序列为i,…,k-1,最大加分是f[i,k-1]。
右子树中序遍历序列为k+1,…,j,最大加分是f[k+1,j]。
状态转移方程:
f[i,j]=max{f[i,k-1]*f[k+1,j]+a[k]} (i<k<j)。
初始:
f[i,i]=a[i]; f[i,j]=1;
目标:f[1,n]。
在求f[i,j]的同一时候,记下i,…,j的根k,root[i,j]:=k;
这道题有非常多细节要注意,先上代码再解释
for (int i=0;i<=n;i++) { for (int j=0;j<=n;j++) { f[i][j]=1; } } for (int i=1;i<=n;i++) { scanf("%d",&a[i]); f[i][i]=a[i]; root[i][i]=i; }
这样,在保证了其它节点f值为1的前提下,我们将叶子节点值赋值为本身分数,顺便将每一个节点的根设为他自己。
f[i][j]=0; for (int k=i;k<=j;k++) { if (f[i][j]<f[i][k-1]*f[k+1][j]+f[k][k]) { f[i][j]=f[i][k-1]*f[k+1][j]+f[k][k]; root[i][j]=k; } }
这里k是枚举i到j这棵子树根节点的变量。其值取遍i到j 假设不能取到i或j 就会导致漏方案的情况。
for (int k=i;k<j;k++)
也就是k取不到j 这样最后一个k就是j-1 此时状态为f[i][j-2]*f[j][j]+f[j-1][j-1]
由于这时的状态是f[i][j-1]*f[j+1][j]+f[j][j]
这样就保证了根节点记录的准确。
假设加分恰好是1,root中就不会记录正确的根结点了。
为什么每一个节点的根要初始化为自身呢?来看这一段:
void find(int i,int j) { if (i<=j) { printf("%d ",root[i][j]); find(i,root[i][j]-1); find(root[i][j]+1,j); } }
原来。一直会递归到i==j。这时输出的是叶子节点。也就是该节点本身。
又为什么须要加上if(i<=j)呢?假设不加的话。当我们递归到i==j的情况下, 下一层是root[i][i-1] 显然不能成立。因此应该及时返回。
如今。整个程序的代码基本解释完了。不如就放上证明人家区间DP身份灵魂代码吧:
for (int p=1;p<=n-1;p++) { for (int i=1;i<=n-p;i++) { int j=i+p; f[i][j]=0; for (int k=i;k<=j;k++) { if (f[i][j]<f[i][k-1]*f[k+1][j]+f[k][k]) { f[i][j]=f[i][k-1]*f[k+1][j]+f[k][k]; root[i][j]=k; } } } }
为什么是区间DP?看两重大循环就明确了。先枚举区间长度,然后枚举起点。最后在起点+长度构成的区间内探讨全部可能情况中的最优解。这就是区间DP,时间复杂度O(n³)
好了,这道题就解释到这里。
——裁剪冰绡,轻叠数重,淡著胭脂匀注