算法旨在用尽可能简单的思路解决这个问题。理解算法也应该是一个越看越简单的过程,当你看到算法里的一串概念,或者一大坨代码,第一感觉是复杂,此时最好还是从样例入手。通过一个简单的样例,并编程实现,这个过程事实上就能够理解清楚算法里的最重要的思想,之后扩展。对算法的引理或者更复杂的情况。对算法进行改进。最后,再考虑时间和空间复杂度的问题。
了解这个算法是源于在Network Alignment问题中。图论算法用得比較多。而对于alignment。特别是pairwise alignment, 又常常遇到maximum bipartite matching问题,解决问题,是通过Network Flow问题的解法来实现。
一、Network Flow
Network Flow,指的是在从source 到 destination的路径组成一个network, 每条边有一个capacity, 表示从这条边上能通过的最大信息流,而Network Flow问题则要找出从源到目的地能通过的最大流, Maximum Flow. 信息在流动的过程中须要遵循两个原则;
1. 对于每一个节点,流入和流出的信息必须相等。
2.流过每条边的信息不能超过边上的capacity.
最大流问题和minimum cut是等价的,找最大流也就是找minimum cut,minimum cut是例如以下定义的:
我们要在Network上删除一些边。删除掉这些边后,从source 就没有路径到目的地了,我们要找到尽可能少的边,来达到这个目的,这就是minimum cut。
二、 Ford-Fulkerson算法
第一遍读这个算法的时候。不懂,如今读这个算法,认为非常清晰,如今把算法的思路复述一遍。不知道第一次读的人会不会认为easy理解:
1、 构建Residual graph:由于在原network上已经有了capacity, 如今给定这个网络一个流flow的值, 比如边是(u,v)我们计算capacity-f, 同一时候我们也计算(v,u),值为f(由于capacity为0),
假设一条边的这个值为正,则保留,否则删除。
2、augmenting path: 通过1得到的就是Residual graph,这个graph上的从source到destination的全部路径都叫做augmenting path.
3、针对每条augmenting path: 改变path上全部边的capacity,改变规则例如以下(以(u,v)为例):
找到这条path上的最小的capacity, f,
降低u->v的capacity, 添加v->u的capacity.
算法的时间复杂度 O(m+n)f),f是max-flow.
代码:
// C++ program for implementation of Ford Fulkerson algorithm #include <iostream> #include <limits.h> #include <string.h> #include <queue> using namespace std; // Number of vertices in given graph #define V 6 /* Returns true if there is a path from source 's' to sink 't' in residual graph. Also fills parent[] to store the path */ bool bfs(int rGraph[V][V], int s, int t, int parent[]) { // Create a visited array and mark all vertices as not visited bool visited[V]; memset(visited, 0, sizeof(visited)); // Create a queue, enqueue source vertex and mark source vertex // as visited queue <int> q; q.push(s); visited[s] = true; parent[s] = -1; // Standard BFS Loop while (!q.empty()) { int u = q.front(); q.pop(); for (int v=0; v<V; v++) { if (visited[v]==false && rGraph[u][v] > 0) { q.push(v); parent[v] = u; visited[v] = true; } } } // If we reached sink in BFS starting from source, then return // true, else false return (visited[t] == true); } // Returns tne maximum flow from s to t in the given graph int fordFulkerson(int graph[V][V], int s, int t) { int u, v; // Create a residual graph and fill the residual graph with // given capacities in the original graph as residual capacities // in residual graph int rGraph[V][V]; // Residual graph where rGraph[i][j] indicates // residual capacity of edge from i to j (if there // is an edge. If rGraph[i][j] is 0, then there is not) for (u = 0; u < V; u++) for (v = 0; v < V; v++) rGraph[u][v] = graph[u][v]; int parent[V]; // This array is filled by BFS and to store path int max_flow = 0; // There is no flow initially // Augment the flow while tere is path from source to sink while (bfs(rGraph, s, t, parent)) { // Find minimum residual capacity of the edhes along the // path filled by BFS. Or we can say find the maximum flow // through the path found. int path_flow = INT_MAX; for (v=t; v!=s; v=parent[v]) { u = parent[v]; path_flow = min(path_flow, rGraph[u][v]); } // update residual capacities of the edges and reverse edges // along the path for (v=t; v != s; v=parent[v]) { u = parent[v]; rGraph[u][v] -= path_flow; rGraph[v][u] += path_flow; } // Add path flow to overall flow max_flow += path_flow; } // Return the overall flow return max_flow; } // Driver program to test above functions int main() { // Let us create a graph shown in the above example int graph[V][V] = { {0, 16, 13, 0, 0, 0}, {0, 0, 10, 12, 0, 0}, {0, 4, 0, 0, 14, 0}, {0, 0, 9, 0, 0, 20}, {0, 0, 0, 7, 0, 4}, {0, 0, 0, 0, 0, 0} }; cout << "The maximum possible flow is " << fordFulkerson(graph, 0, 5); return 0; }
三、Maximum Bipartite Matching
解决问题就非常easy了。我们先加入上源和目的地节点。如果是任务分配问题,则源能够有边指向全部人。全部任务有边能够指向目的地,我们要找的是人和任务之间的最优匹配。
代码:
// A C++ program to find maximal Bipartite matching. #include <iostream> #include <string.h> using namespace std; // M is number of applicants and N is number of jobs #define M 6 #define N 6 // A DFS based recursive function that returns true if a // matching for vertex u is possible bool bpm(bool bpGraph[M][N], int u, bool seen[], int matchR[]) { // Try every job one by one for (int v = 0; v < N; v++) { // If applicant u is interested in job v and v is // not visited if (bpGraph[u][v] && !seen[v]) { seen[v] = true; // Mark v as visited // If job 'v' is not assigned to an applicant OR // previously assigned applicant for job v (which is matchR[v]) // has an alternate job available. // Since v is marked as visited in the above line, matchR[v] // in the following recursive call will not get job 'v' again if (matchR[v] < 0 || bpm(bpGraph, matchR[v], seen, matchR)) { matchR[v] = u; return true; } } } return false; } // Returns maximum number of matching from M to N int maxBPM(bool bpGraph[M][N]) { // An array to keep track of the applicants assigned to // jobs. The value of matchR[i] is the applicant number // assigned to job i, the value -1 indicates nobody is // assigned. int matchR[N]; // Initially all jobs are available memset(matchR, -1, sizeof(matchR)); int result = 0; // Count of jobs assigned to applicants for (int u = 0; u < M; u++) { // Mark all jobs as not seen for next applicant. bool seen[N]; memset(seen, 0, sizeof(seen)); // Find if the applicant 'u' can get a job if (bpm(bpGraph, u, seen, matchR)) result++; } return result; } // Driver program to test above functions int main() { // Let us create a bpGraph shown in the above example bool bpGraph[M][N] = { {0, 1, 1, 0, 0, 0}, {1, 0, 0, 1, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1} }; cout << "Maximum number of applicants that can get job is " << maxBPM(bpGraph); return 0; }
四、对于任务分配问题,还有Hungrian算法,这个后面再讲。此算法的时间复杂度和空间复杂度以及改进也能够探讨