[LeetCode] 209. Minimum Size Subarray Sum 最短子数组之和
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
s = 7, nums = [2,3,1,2,4,3]
[4,3]
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
这道题的关键是由正整数组成的数组,这样才能保证累加的数组是递增的,才能使用双指针或者二分法。
解法1: 双指针,滑动窗口。
解法2: 二分法
Java: moving window
1 2 3 4 5 6 7 8 9 10 11 12 13 | public class Solution { public int minSubArrayLen( int s, int [] nums) { int i = 0 , j = 0 , sum = 0 , min = Integer.MAX_VALUE; while (j < nums.length) { while (sum < s && j < nums.length) sum += nums[j++]; if (sum>=s){ while (sum >= s && i < j) sum -= nums[i++]; min = Math.min(min, j - i + 1 ); } } return min == Integer.MAX_VALUE ? 0 : min; } } |
Java: BS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | public class Solution { public int minSubArrayLen( int s, int [] nums) { int i = 1 , j = nums.length, min = 0 ; while (i <= j) { int mid = (i + j) / 2 ; if (windowExist(mid, nums, s)) { j = mid - 1 ; min = mid; } else i = mid + 1 ; } return min; } private boolean windowExist( int size, int [] nums, int s) { int sum = 0 ; for ( int i = 0 ; i < nums.length; i++) { if (i >= size) sum -= nums[i - size]; sum += nums[i]; if (sum >= s) return true ; } return false ; } } |
Java: BS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | public class Solution { public int minSubArrayLen( int s, int [] nums) { int sum = 0 , min = Integer.MAX_VALUE; int [] sums = new int [nums.length]; for ( int i = 0 ; i < nums.length; i++) sums[i] = nums[i] + (i == 0 ? 0 : sums[i - 1 ]); for ( int i = 0 ; i < nums.length; i++) { int j = findWindowEnd(i, sums, s); if (j == nums.length) break ; min = Math.min(j - i + 1 , min); } return min == Integer.MAX_VALUE ? 0 : min; } private int findWindowEnd( int start, int [] sums, int s) { int i = start, j = sums.length - 1 , offset = start == 0 ? 0 : sums[start - 1 ]; while (i <= j) { int m = (i + j) / 2 ; int sum = sums[m] - offset; if (sum >= s) j = m - 1 ; else i = m + 1 ; } return i; } |
Java:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | public int minSubArrayLen( int s, int [] a) { if (a == null || a.length == 0 ) return 0 ; int i = 0 , j = 0 , sum = 0 , min = Integer.MAX_VALUE; while (j < a.length) { sum += a[j++]; while (sum >= s) { min = Math.min(min, j - i); sum -= a[i++]; } } return min == Integer.MAX_VALUE ? 0 : min; } |
Java:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | public class Solution { public int minSubArrayLen( int s, int [] nums) { return solveNLogN(s, nums); } private int solveN( int s, int [] nums) { int start = 0 , end = 0 , sum = 0 , minLen = Integer.MAX_VALUE; while (end < nums.length) { while (end < nums.length && sum < s) sum += nums[end++]; if (sum < s) break ; while (start < end && sum >= s) sum -= nums[start++]; if (end - start + 1 < minLen) minLen = end - start + 1 ; } return minLen == Integer.MAX_VALUE ? 0 : minLen; } private int solveNLogN( int s, int [] nums) { int [] sums = new int [nums.length + 1 ]; for ( int i = 1 ; i < sums.length; i++) sums[i] = sums[i - 1 ] + nums[i - 1 ]; int minLen = Integer.MAX_VALUE; for ( int i = 0 ; i < sums.length; i++) { int end = binarySearch(i + 1 , sums.length - 1 , sums[i] + s, sums); if (end == sums.length) break ; if (end - i < minLen) minLen = end - i; } return minLen == Integer.MAX_VALUE ? 0 : minLen; } private int binarySearch( int lo, int hi, int key, int [] sums) { while (lo <= hi) { int mid = (lo + hi) / 2 ; if (sums[mid] >= key){ hi = mid - 1 ; } else { lo = mid + 1 ; } } return lo; } } |
Python:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # Sliding window solution. class Solution: # @param {integer} s # @param {integer[]} nums # @return {integer} def minSubArrayLen( self , s, nums): start = 0 sum = 0 min_size = float ( "inf" ) for i in xrange ( len (nums)): sum + = nums[i] while sum > = s: min_size = min (min_size, i - start + 1 ) sum - = nums[start] start + = 1 return min_size if min_size ! = float ( "inf" ) else 0 |
Python:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | # Time: O(nlogn) # Space: O(n) # Binary search solution. class Solution2: # @param {integer} s # @param {integer[]} nums # @return {integer} def minSubArrayLen( self , s, nums): min_size = float ( "inf" ) sum_from_start = [n for n in nums] for i in xrange ( len (sum_from_start) - 1 ): sum_from_start[i + 1 ] + = sum_from_start[i] for i in xrange ( len (sum_from_start)): end = self .binarySearch( lambda x, y: x < = y, sum_from_start, \ i, len (sum_from_start), \ sum_from_start[i] - nums[i] + s) if end < len (sum_from_start): min_size = min (min_size, end - i + 1 ) return min_size if min_size ! = float ( "inf" ) else 0 def binarySearch( self , compare, A, start, end, target): while start < end: mid = start + (end - start) / 2 if compare(target, A[mid]): end = mid else : start = mid + 1 return start |
C++:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | / O(n) class Solution { public : int minSubArrayLen( int s, vector< int >& nums) { if (nums.empty()) return 0; int left = 0, right = 0, sum = 0, len = nums.size(), res = len + 1; while (right < len) { while (sum < s && right < len) { sum += nums[right++]; } while (sum >= s) { res = min(res, right - left); sum -= nums[left++]; } } return res == len + 1 ? 0 : res; } }; |
C++:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | class Solution { public : int minSubArrayLen( int s, vector< int >& nums) { int res = INT_MAX, left = 0, sum = 0; for ( int i = 0; i < nums.size(); ++i) { sum += nums[i]; while (left <= i && sum >= s) { res = min(res, i - left + 1); sum -= nums[left++]; } } return res == INT_MAX ? 0 : res; } }; |
C++: 二分法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | // O(nlgn) class Solution { public : int minSubArrayLen( int s, vector< int >& nums) { int len = nums.size(), sums[len + 1] = {0}, res = len + 1; for ( int i = 1; i < len + 1; ++i) sums[i] = sums[i - 1] + nums[i - 1]; for ( int i = 0; i < len + 1; ++i) { int right = searchRight(i + 1, len, sums[i] + s, sums); if (right == len + 1) break ; if (res > right - i) res = right - i; } return res == len + 1 ? 0 : res; } int searchRight( int left, int right, int key, int sums[]) { while (left <= right) { int mid = (left + right) / 2; if (sums[mid] >= key) right = mid - 1; else left = mid + 1; } return left; } }; |
C++:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | class Solution { public : int minSubArrayLen( int s, vector< int >& nums) { int res = INT_MAX, n = nums.size(); vector< int > sums(n + 1, 0); for ( int i = 1; i < n + 1; ++i) sums[i] = sums[i - 1] + nums[i - 1]; for ( int i = 0; i < n; ++i) { int left = i + 1, right = n, t = sums[i] + s; while (left <= right) { int mid = left + (right - left) / 2; if (sums[mid] < t) left = mid + 1; else right = mid - 1; } if (left == n + 1) break ; res = min(res, left - i); } return res == INT_MAX ? 0 : res; } }; |
类似题目:
[LeetCode] 53. Maximum Subarray 最大子数组
[LeetCode] 325. Maximum Size Subarray Sum Equals k 和等于k的最长子数组
[LeetCode] 560. Subarray Sum Equals K 子数组和为K
All LeetCode Questions List 题目汇总
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构