[LeetCode] 548. Split Array with Equal Sum 分割数组成和相同的子数组
Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies following conditions:
- 0 < i, i + 1 < j, j + 1 < k < n - 1
- Sum of subarrays (0, i - 1), (i + 1, j - 1), (j + 1, k - 1) and (k + 1, n - 1) should be equal.
where we define that subarray (L, R) represents a slice of the original array starting from the element indexed L to the element indexed R.
Example:
Input: [1,2,1,2,1,2,1] Output: True Explanation: i = 1, j = 3, k = 5. sum(0, i - 1) = sum(0, 0) = 1 sum(i + 1, j - 1) = sum(2, 2) = 1 sum(j + 1, k - 1) = sum(4, 4) = 1 sum(k + 1, n - 1) = sum(6, 6) = 1
Note:
- 1 <= n <= 2000.
- Elements in the given array will be in range [-1,000,000, 1,000,000].
给一个数组,找出三个位置,使得数组被分为四段,使得每段之和相等,问存不存在这样的三个位置,注意三个位置上的数字不属于任何一段。
解法1: 暴力法,那就是三重循环,时间复杂度是O(n^3),空间复杂度是O(n)。过不了大数据, TLE。
解法2: 采用空间换时间,从中间进行分割,然后在前半部分进行搜索,看看是不是可以找到和相同的划分,如果找到了,就将和加入哈希表中;然后再在后半部分进行搜索,如果找到了和相同的划分并且该和也存在于哈希表中,这说明找到了合适的i,j,k,可以将数组划分为和相同的四个部分,返回true。这样时间复杂度就降低成了O(n^2)。
解法3: 建立一个长度为数组长度的sum[i],然后计算出每一个位置的它前面所有数字的和,这样就避免了以后大量的重复计算和的运算。然后计算i-j是否有满足1-i的和等于i-j, 有的话存到set里,避免重复计算。然后在计算位置k,是否也等于之前set里的值,如果有就返回True.
解法4: 用数组sums记录前n项和,在用字典idxs统计sums元素对应的下标列表,根据sums和idxs枚举满足(0, i - 1) == (i + 1, j - 1)条件的i,j。利用字典jlist记录子数组和对应的j值列表。最后遍历k,枚举jlist中子数组和(k + 1, n - 1)对应的j值,然后判断是否存在 (j + 1, k - 1) 与 (k + 1, n - 1) 相等
Java: 暴力, TLE
public class Solution { public int sum(int[] nums, int l, int r) { int summ = 0; for (int i = l; i < r; i++) summ += nums[i]; return summ; } public boolean splitArray(int[] nums) { if (nums.length < 7) return false; for (int i = 1; i < nums.length - 5; i++) { int sum1 = sum(nums, 0, i); for (int j = i + 2; j < nums.length - 3; j++) { int sum2 = sum(nums, i + 1, j); for (int k = j + 2; k < nums.length - 1; k++) { int sum3 = sum(nums, j + 1, k); int sum4 = sum(nums, k + 1, nums.length); if (sum1 == sum2 && sum3 == sum4 && sum2 == sum4) return true; } } } return false; } }
Java: 暴力,TLE
public class Solution { public boolean splitArray(int[] nums) { if (nums.length < 7) return false; int[] sum = new int[nums.length]; sum[0] = nums[0]; for (int i = 1; i < nums.length; i++) { sum[i] = sum[i - 1] + nums[i]; } for (int i = 1; i < nums.length - 5; i++) { int sum1 = sum[i - 1]; for (int j = i + 2; j < nums.length - 3; j++) { int sum2 = sum[j - 1] - sum[i]; for (int k = j + 2; k < nums.length - 1; k++) { int sum3 = sum[k - 1] - sum[j]; int sum4 = sum[nums.length - 1] - sum[k]; if (sum1 == sum2 && sum3 == sum4 && sum2 == sum4) return true; } } } return false; } }
Java: TLE
public class Solution { public boolean splitArray(int[] nums) { if (nums.length < 7) return false; int[] sum = new int[nums.length]; sum[0] = nums[0]; for (int i = 1; i < nums.length; i++) { sum[i] = sum[i - 1] + nums[i]; } for (int i = 1; i < nums.length - 5; i++) { int sum1 = sum[i - 1]; for (int j = i + 2; j < nums.length - 3; j++) { int sum2 = sum[j - 1] - sum[i]; if (sum1 != sum2) continue; for (int k = j + 2; k < nums.length - 1; k++) { int sum3 = sum[k - 1] - sum[j]; int sum4 = sum[nums.length - 1] - sum[k]; if (sum3 == sum4 && sum2 == sum4) return true; } } } return false; } }
Java: Accepted
public class Solution { public boolean splitArray(int[] nums) { if (nums.length < 7) return false; int[] sum = new int[nums.length]; sum[0] = nums[0]; for (int i = 1; i < nums.length; i++) { sum[i] = sum[i - 1] + nums[i]; } for (int j = 3; j < nums.length - 3; j++) { HashSet < Integer > set = new HashSet < > (); for (int i = 1; i < j - 1; i++) { if (sum[i - 1] == sum[j - 1] - sum[i]) set.add(sum[i - 1]); } for (int k = j + 2; k < nums.length - 1; k++) { if (sum[nums.length - 1] - sum[k] == sum[k - 1] - sum[j] && set.contains(sum[k - 1] - sum[j])) return true; } } return false; } }
Python:
# Time: O(n^2) # Space: O(n) class Solution(object): def splitArray(self, nums): """ :type nums: List[int] :rtype: bool """ if len(nums) < 7: return False accumulated_sum = [0] * len(nums) accumulated_sum[0] = nums[0] for i in xrange(1, len(nums)): accumulated_sum[i] = accumulated_sum[i-1] + nums[i] for j in xrange(3, len(nums)-3): lookup = set() for i in xrange(1, j-1): if accumulated_sum[i-1] == accumulated_sum[j-1] - accumulated_sum[i]: lookup.add(accumulated_sum[i-1]) for k in xrange(j+2, len(nums)-1): if accumulated_sum[-1] - accumulated_sum[k] == accumulated_sum[k-1] - accumulated_sum[j] and \ accumulated_sum[k - 1] - accumulated_sum[j] in lookup: return True return False
Python:
class Solution(object): def splitArray(self, nums): """ :type nums: List[int] :rtype: bool """ size = len(nums) sums = [0] * (size + 1) for x in range(size): sums[x + 1] += sums[x] + nums[x] idxs = collections.defaultdict(list) for x in range(size): idxs[sums[x + 1]].append(x) jlist = collections.defaultdict(list) for i in range(1, size): for j in idxs[2 * sums[i] + nums[i]]: if i < j < size: jlist[sums[i]].append(j + 1) for k in range(size - 2, 0, -1): for j in jlist[sums[size] - sums[k + 1]]: if j + 1 > k: continue if sums[k] - sums[j + 1] == sums[size] - sums[k + 1]: return True return False
C++:
class Solution { public: bool splitArray(vector<int>& nums) { if (nums.size() < 7) return false; int n = nums.size(); vector<int> sums = nums; for (int i = 1; i < n; ++i) { sums[i] = sums[i - 1] + nums[i]; } for (int j = 3; j < n - 3; ++j) { unordered_set<int> s; for (int i = 1; i < j - 1; ++i) { if (sums[i - 1] == (sums[j - 1] - sums[i])) { s.insert(sums[i - 1]); } } for (int k = j + 1; k < n - 1; ++k) { int s3 = sums[k - 1] - sums[j], s4 = sums[n - 1] - sums[k]; if (s3 == s4 && s.count(s3)) return true; } } return false; } };
C++:
class Solution { public: bool splitArray(vector<int>& nums) { if (nums.size() < 7) return false; int n = nums.size(), target = 0; int sum = accumulate(nums.begin(), nums.end(), 0); for (int i = 1; i < n - 5; ++i) { if (i != 1 && nums[i] == 0 && nums[i - 1] == 0) continue; target += nums[i - 1]; if (helper(nums, target, sum - target - nums[i], i + 1, 1)) { return true; } } return false; } bool helper(vector<int>& nums, int target, int sum, int start, int cnt) { if (cnt == 3) return sum == target; int curSum = 0, n = nums.size(); for (int i = start + 1; i < n + 2 * cnt - 5; ++i) { curSum += nums[i - 1]; if (curSum == target && helper(nums, target, sum - curSum - nums[i], i + 1, cnt + 1)) { return true; } } return false; }
C++: 暴力+优化
class Solution { public: bool splitArray(vector<int>& nums) { int n = nums.size(); vector<int> sums = nums; for (int i = 1; i < n; ++i) { sums[i] = sums[i - 1] + nums[i]; } for (int i = 1; i <= n - 5; ++i) { if (i != 1 && nums[i] == 0 && nums[i - 1] == 0) continue; for (int j = i + 2; j <= n - 3; ++j) { if (sums[i - 1] != (sums[j - 1] - sums[i])) continue; for (int k = j + 2; k <= n - 1; ++k) { int sum3 = sums[k - 1] - sums[j]; int sum4 = sums[n - 1] - sums[k]; if (sum3 == sum4 && sum3 == sums[i - 1]) { return true; } } } } return false; } };
类似题目:
Split an array into two equal Sum subarrays
All LeetCode Questions List 题目汇总