[LeetCode] 533. Lonely Pixel II 孤独的像素 II
Given a picture consisting of black and white pixels, and a positive integer N, find the number of black pixels located at some specific row R and column C that align with all the following rules:
- Row R and column C both contain exactly N black pixels.
- For all rows that have a black pixel at column C, they should be exactly the same as row R
The picture is represented by a 2D char array consisting of 'B' and 'W', which means black and white pixels respectively.
Example:
Input: [['W', 'B', 'W', 'B', 'B', 'W'], ['W', 'B', 'W', 'B', 'B', 'W'], ['W', 'B', 'W', 'B', 'B', 'W'], ['W', 'W', 'B', 'W', 'B', 'W']] N = 3 Output: 6 Explanation: All the bold 'B' are the black pixels we need (all 'B's at column 1 and 3). 0 1 2 3 4 5 column index 0 [['W', 'B', 'W', 'B', 'B', 'W'], 1 ['W', 'B', 'W', 'B', 'B', 'W'], 2 ['W', 'B', 'W', 'B', 'B', 'W'], 3 ['W', 'W', 'B', 'W', 'B', 'W']] row index Take 'B' at row R = 0 and column C = 1 as an example: Rule 1, row R = 0 and column C = 1 both have exactly N = 3 black pixels. Rule 2, the rows have black pixel at column C = 1 are row 0, row 1 and row 2. They are exactly the same as row R = 0.
Note:
- The range of width and height of the input 2D array is [1,200].
531. Lonely Pixel I 的拓展,这题多了一个整数N,行和列可以最多含有N个黑元素。
解法:思路和531题一样,还是用一个行和一个列先统计黑元素的个数,然后在遍历一遍图,是黑元素并且行和列都等于N的就加到结果,最后返回结果。这题又多出一个条件2:要保证这N行的黑元素的位置要完全一样,可以一个一个的来比较。好的做法是把行元素转换成字符串或tuple,用一个哈希表记录行元素,然后直接比较行。
0[['W', 'B', 'W', 'B', 'B', 'W'],
1 ['W', 'W', 'B', 'B', 'B', 'W'],
2 ['W', 'B', 'W', 'B', 'B', 'W'],
3 ['W', 'B', 'W', 'W', 'B', 'W']]
Java:
public int findBlackPixel(char[][] picture, int N) { int m = picture.length; if (m == 0) return 0; int n = picture[0].length; if (n == 0) return 0; Map<String, Integer> map = new HashMap<>(); int[] colCount = new int[n]; for (int i = 0; i < m; i++) { String key = scanRow(picture, i, N, colCount); if (key.length() != 0) { map.put(key, map.getOrDefault(key, 0) + 1); } } int result = 0; for (String key : map.keySet()) { if (map.get(key) == N) { for (int j = 0; j < n; j++) { if (key.charAt(j) == 'B' && colCount[j] == N) { result += N; } } } } return result; } private String scanRow(char[][] picture, int row, int target, int[] colCount) { int n = picture[0].length; int rowCount = 0; StringBuilder sb = new StringBuilder(); for (int j = 0; j < n; j++) { if (picture[row][j] == 'B') { rowCount++; colCount[j]++; } sb.append(picture[row][j]); } if (rowCount == target) return sb.toString(); return ""; }
Java: using hashmap to store the string of rows. So that we don't need to check rule 2
public int findBlackPixel(char[][] picture, int N) { if (picture == null || picture.length == 0 || picture[0].length == 0) return 0; int m = picture.length, n = picture[0].length; int[] cols = new int[n]; Map<String, Integer> map = new HashMap<>(); for (int i = 0; i < m; i++) { int count = 0; StringBuilder sb = new StringBuilder(); for (int j = 0; j < n; j++) { if (picture[i][j] == 'B') { cols[j]++; count++; } sb.append(picture[i][j]); } if (count == N) { String curRow = sb.toString(); map.put(curRow, map.getOrDefault(curRow, 0) + 1); } } int res = 0; for (String row : map.keySet()) { if (map.get(row) != N) continue; for (int i = 0; i < n; i++) { if (row.charAt(i) == 'B' && cols[i] == N) { res += N; } } } return res; }
Python:
class Solution(object): def findBlackPixel(self, picture, N): """ :type picture: List[List[str]] :type N: int :rtype: int """ rows, cols = [0] * len(picture), [0] * len(picture[0]) lookup = collections.defaultdict(int) for i in xrange(len(picture)): for j in xrange(len(picture[0])): if picture[i][j] == 'B': rows[i] += 1 cols[j] += 1 lookup[tuple(picture[i])] += 1 result = 0 for i in xrange(len(picture)): if rows[i] == N and lookup[tuple(picture[i])] == N: for j in xrange(len(picture[0])): result += picture[i][j] == 'B' and cols[j] == N return result
Python:
class Solution(object): def findBlackPixel(self, picture, N): """ :type picture: List[List[str]] :type N: int :rtype: int """ lookup = collections.Counter(map(tuple, picture)) cols = [col.count('B') for col in zip(*picture)] return sum(N * zip(row, cols).count(('B', N)) \ for row, cnt in lookup.iteritems() \ if cnt == N == row.count('B'))
Python:
class Solution(object): def findBlackPixel(self, picture, N): """ :type picture: List[List[str]] :type N: int :rtype: int """ w, h = len(picture), len(picture[0]) rows, cols = [0] * w, [0] * h for x in range(w): for y in range(h): if picture[x][y] == 'B': rows[x] += 1 cols[y] += 1 sdict = collections.defaultdict(int) for idx, row in enumerate(picture): sdict[''.join(row)] += 1 ans = 0 for x in range(w): row = ''.join(picture[x]) if sdict[row] != N: continue for y in range(h): if picture[x][y] == 'B': if rows[x] == N: if cols[y] == N: ans += 1 return ans
C++:
class Solution { public: int findBlackPixel(vector<vector<char>>& picture, int N) { vector<int> rows = vector<int>(picture.size()); vector<int> cols = vector<int>(picture[0].size()); unordered_map<string, int> lookup; vector<string> srows; for (int i = 0; i < picture.size(); ++i) { string s; for (int j = 0; j < picture[0].size(); ++j) { if (picture[i][j] == 'B') { ++rows[i]; ++cols[j]; } s.push_back(picture[i][j]); } ++lookup[s]; srows.emplace_back(move(s)); } int result = 0; for (int i = 0; i < picture.size(); ++i) { if (rows[i] == N && lookup[srows[i]] == N) { for (int j = 0; j < picture[0].size(); ++j) { result += picture[i][j] == 'B' && cols[j] == N; } } } return result; } };
类似题目:
[LeetCode] 531. Lonely Pixel I 孤独的像素 I
All LeetCode Questions List 题目汇总