[LeetCode] 108. Convert Sorted Array to Binary Search Tree 把有序数组转成二叉搜索树
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST: 0 / \ -3 9 / / -10 5
给定一个升序排序的数组,把它转成一个高度平衡的二叉搜索树(两个子树的深度相差不大于1)。
二叉搜索树的特点:
1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
2. 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
3. 任意节点的左、右子树也分别为二叉查找树;
4. 没有键值相等的节点。
中序遍历二叉查找树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉查找树变成一个有序序列,构造树的过程即为对无序序列进行查找的过程。
反过来,根节点就是有序数组的中间点,从中间点分开为左右两个有序数组,再分别找出两个数组的中间点作为左右两个子节点,就是二分查找法。
解法1:二分法BS + 递归Recursive
解法2: 二分法 + 迭代
Java: Recursive
public TreeNode sortedArrayToBST(int[] num) { if (num.length == 0) { return null; } TreeNode head = helper(num, 0, num.length - 1); return head; } public TreeNode helper(int[] num, int low, int high) { if (low > high) { // Done return null; } int mid = (low + high) / 2; TreeNode node = new TreeNode(num[mid]); node.left = helper(num, low, mid - 1); node.right = helper(num, mid + 1, high); return node; }
Java: Iterative
public class Solution { public TreeNode sortedArrayToBST(int[] nums) { int len = nums.length; if ( len == 0 ) { return null; } // 0 as a placeholder TreeNode head = new TreeNode(0); Deque<TreeNode> nodeStack = new LinkedList<TreeNode>() {{ push(head); }}; Deque<Integer> leftIndexStack = new LinkedList<Integer>() {{ push(0); }}; Deque<Integer> rightIndexStack = new LinkedList<Integer>() {{ push(len-1); }}; while ( !nodeStack.isEmpty() ) { TreeNode currNode = nodeStack.pop(); int left = leftIndexStack.pop(); int right = rightIndexStack.pop(); int mid = left + (right-left)/2; // avoid overflow currNode.val = nums[mid]; if ( left <= mid-1 ) { currNode.left = new TreeNode(0); nodeStack.push(currNode.left); leftIndexStack.push(left); rightIndexStack.push(mid-1); } if ( mid+1 <= right ) { currNode.right = new TreeNode(0); nodeStack.push(currNode.right); leftIndexStack.push(mid+1); rightIndexStack.push(right); } } return head; } }
Python:
class Solution(object): def sortedArrayToBST(self, nums): """ :type nums: List[int] :rtype: TreeNode """ return self.sortedArrayToBSTRecu(nums, 0, len(nums)) def sortedArrayToBSTRecu(self, nums, start, end): if start == end: return None mid = start + self.perfect_tree_pivot(end - start) node = TreeNode(nums[mid]) node.left = self.sortedArrayToBSTRecu(nums, start, mid) node.right = self.sortedArrayToBSTRecu(nums, mid + 1, end) return node def perfect_tree_pivot(self, n): """ Find the point to partition n keys for a perfect binary search tree """ x = 1 # find a power of 2 <= n//2 # while x <= n//2: # this loop could probably be written more elegantly :) # x *= 2 x = 1 << (n.bit_length() - 1) # use the left bit shift, same as multiplying x by 2**n-1 if x // 2 - 1 <= (n - x): return x - 1 # case 1: the left subtree of the root is perfect and the right subtree has less nodes else: return n - x // 2 # case 2 == n - (x//2 - 1) - 1 : the left subtree of the root # has more nodes and the right subtree is perfect.
C++:
class Solution { public: TreeNode* sortedArrayToBST(vector<int>& nums) { return sortedArrayToBSTHelper(nums, 0, nums.size() - 1); } private: TreeNode *sortedArrayToBSTHelper(vector<int> &nums, int start, int end) { if (start <= end) { TreeNode *node = new TreeNode(nums[start + (end - start) / 2]); node->left = sortedArrayToBSTHelper(nums, start, start + (end - start) / 2 - 1); node->right = sortedArrayToBSTHelper(nums, start + (end - start) / 2 + 1, end); return node; } return nullptr; } };
C++:
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode *sortedArrayToBST(vector<int> &num) { return sortedArrayToBST(num, 0 , num.size() - 1); } TreeNode *sortedArrayToBST(vector<int> &num, int left, int right) { if (left > right) return NULL; int mid = (left + right) / 2; TreeNode *cur = new TreeNode(num[mid]); cur->left = sortedArrayToBST(num, left, mid - 1); cur->right = sortedArrayToBST(num, mid + 1, right); return cur; } };
类似题目:
[LeetCode] 109. Convert Sorted List to Binary Search Tree 把有序链表转成二叉搜索树